
Problem Set

2017/2018 Southern California Regional





2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 1

Latin Squares

A Latin Square is an n � n array �lled with n di�erent symbols, with ea
h symbol o

urring exa
tly

on
e in ea
h row and on
e in ea
h 
olumn. The name \Latin Square" was inspired by the work of Leonhard

Euler, who used Latin 
hara
ters in his papers on the topi
.

A Latin Square is said to be in redu
ed form if both its �rst (top) row and �rst (leftmost) 
olumn are

in their natural order.

Your team is to write a program that will read a series of square n� n arrays, where n is in the range

2 through 36 in
lusive. For ea
h array your program is to determine if it is a Latin Square, and if so, if it is

in redu
ed form.

Input to your program will be a series of square arrays. The �rst line for ea
h array is the value of n,

starting in the �rst 
olumn. The next n lines ea
h 
ontain n 
hara
ters in base n, using the 
hara
ters 0

through 9 and upper-
ase A (10) through Z (35). The last line of the last array is followed by end-of-�le.

If the array is not a Latin Square, print a line 
ontaining only the string \No". If it is a Latin Square,

but not in redu
ed form, print a line 
ontaining only the string \Not Redu
ed". If it is a Latin Square in

redu
ed form, print a line 
ontaining only the string \Redu
ed". No leading or trailing whitespa
e is to

appear on an output line.

Sample Input

3

012

120

201

4

3210

0123

2301

1032

11

0123458372A

A9287346283

0285475A834

84738299A02

1947584037A

65848430002

038955873A8

947530200A8

93484721084

95539A92828

04553883568



Problem 1

Latin Squares (
ontinued)

Output for the Sample Input

Redu
ed

Not Redu
ed

No



2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 2

Congruent Numbers

A 
ongruent number is an integer that is the area of some right triangle where the length of ea
h side

of the triangle is a rational number.

A rational number is a fra
tion, p=q, where p, the numerator, and q, the denominator, are integers.

Note that if q = 1, then p=1 is an integer; therefore, an integer is a rational number.

The \
ongruent number problem" is: given an integer n, is it a 
ongruent number? Mathemati
ians

have been working on this sin
e the Middle Ages, so far without su

ess. There is a test that relies on the

unproven Bir
h and Swinnerton-Dyer 
onje
ture. If you 
an prove that 
onje
ture you win a one million

dollar prize from the Clay Mathemati
s Institute. (Your team 
an work on the proof after the 
ontest.)

The task here is mu
h easier: given a and b, the non-hypotenuse sides of a right triangle, determine if

the area of that triangle is a 
ongruent number. That is, determine if the lengths of all three sides of the

triangle are rational numbers and the area n is an integer.

a

b

c

where 


2

= a

2

+ b

2

, n = a � b=2, a; b; 
 are rational numbers and n is an integer.

Input to your program will be a series of lines terminated by end-of-�le. Ea
h line will 
onsist of two

positive rational numbers of the form p or p=q where p and q are integers with no embedded signs or spa
es

and the two rational numbers are separated by whitespa
e. The maximum number of digits in a numerator

(p) or denominator (q) is 100.

For ea
h input pair, your program is to print a line with n, the integer area of the triangle, if n is a


ongruent number or the word \no" if not. No leading or trailing whitespa
e is to be printed on an output

line. There are to be no signs or leading zeroes in front of an integer.

Sample Input

3 4

3/2 20/3

3/5 4/5

1 10

335946000/2950969 233126551/167973000

20 21

12 35

65979511071975972/2305628412171265 16139398885198855/251830194931206



Problem 2

Congruent Numbers (
ontinued)

Output for the Sample Input

6

5

no

no

79

210

210

917



2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 3

Star Arrangements

The re
ent vote in Puerto Ri
o favoring United States statehood has made 
ag makers very ex
ited.

An updated 
ag with 51 stars rather than the 
urrent 50 would 
ause a huge jump in U. S. 
ag sales. The


urrent pattern for 50 stars is �ve rows of 6 stars, interla
ed with four o�set rows of 5 stars, as shown here:

* * * * * *

* * * * *

* * * * * *

* * * * *

* * * * * *

* * * * *

* * * * * *

* * * * *

* * * * * *

This pattern has the property that adja
ent rows di�er by no more than one star. We represent this star

arrangement 
ompa
tly by the number of stars in the �rst two rows: 6,5.

When displayed verti
ally, adja
ent rows di�er by no more than one star:

* * * * *

* * * *

* * * * *

* * * *

* * * * *

* * * *

* * * * *

* * * *

* * * * *

* * * *

* * * * *

The 
ompa
t representation for this is: 5,4.

A 51-star 
ag that preserves the relationship 
an have three rows of 9 stars, interla
ed with three rows

of 8 stars (27 + 24 = 51):

* * * * * * * * *

* * * * * * * *

* * * * * * * * *

* * * * * * * *

* * * * * * * * *

* * * * * * * *

This 
ompa
t representation is: 9,8.

A star arrangement is visually appealing if it satis�es the following 
onditions:

� Every other row has the same number of stars.

� Adja
ent rows di�er by no more than one star.

� The �rst row 
annot have fewer stars than the se
ond row.

Your team sees beyond the short-term 
hange to 51 for the U. S. 
ag. You want to 
orner the market on


ags for any union of three or more states, all the way up to 32,767. Your team is to write a program that

will, given the number of stars to pla
e on a 
ag (S), �nd all possible visually appealing star arrangements.



Problem 3

Star Arrangements (
ontinued)

Input to your program is a list of values of S, one number per line starting in the �rst 
olumn, where

3 � S � 32,767. For ea
h line of input, your program is to print a line with the value of S immediately

followed by a 
olon, then for ea
h visually appealing star arrangement, print a line with a spa
e followed

by the 
ompa
t star arrangement. Ea
h 
ompa
t star arrangement is to be printed in the form \x,y", with

exa
tly one 
omma between x and y and no other 
hara
ters.

The list of 
ompa
t representations is to be printed in in
reasing order of the number of stars in the �rst

row. If there are multiple 
ompa
t representations with the same number of stars in the �rst row, print them

in in
reasing order of the number of stars in the se
ond row. The 
ases 1-by-S and S-by-1 are 
onsidered

trivial, so do not print those arrangements.

Sample Input

3

50

51

Output for the Sample Input

3:

2,1

50:

2,1

2,2

3,2

5,4

5,5

6,5

10,10

13,12

17,16

25,25

51:

2,1

3,3

9,8

17,17

26,25



2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 4

Halfway

A friend of yours has written a program that 
ompares every pair of : : : something. With n items, it

works like this: First, it prints a 1, and it 
ompares item 1 to items 2; 3; 4; : : : ; n. It then prints 2, and


ompares item 2 to items 3; 4; 5; : : : ; n. It 
ontinues like that until every pair has been 
ompared exa
tly

on
e. If it 
ompares item number x to item number y, it will not later 
ompare item number y to item

number x. It will not 
ompare any item to itself.

Your friend wants to know when his program is halfway done. Assuming that all 
omparisons take the

same amount of time, what will the last number printed be when the program is exa
tly halfway done? For

an odd number of 
omparisons, this is when it's doing the middle 
omparison. For an even number, it's the

�rst of the two middle 
omparisons. Note that sin
e the earlier items have more 
omparisons than the later

items, the answer is not simply n=2.

Input to your program will be a series of lines terminated by end-of-�le. Ea
h line will 
onsist of a single

integer n, (2 � n � 10

9

), whi
h is the number of items. The integer will have no sign and no leading or

trailing spa
es.

For ea
h input value, your program is to print a line 
ontaining an integer with no sign or leading or

trailing spa
es that is the last number printed by your friend's program before it does the halfway 
omparison.

Sample Input

2

500

1919

1000000000

72

7

Output for the Sample Input

1

147

562

292893219

21

2





2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 5

Rainbow Roads

The Transit Authority of Greater Podunk is planning its holiday de
orations. They want to 
reate an

illuminated display of their light rail map in whi
h ea
h stret
h of tra
k between stations 
an be illuminated

in one of several 
olors.

At periodi
 intervals, the 
ontrolling software will 
hoose two stations at random and illuminate all of

the segments 
onne
ting those two stations. By design, for any two stations on the Greater Podunk Railway,

there is a unique path 
onne
ting the two.

For maximum 
olor and 
heer, the display designers want to avoid having two adja
ent segments of

tra
k lighting up in the same 
olor. They fear, however, that they may have deviated from this guideline in

the pro
ess of building the display. One of them has gone so far as to propose a means of measuring just

how far from that ideal they may have fallen.

You are given a tree with n nodes (stations), 
onveniently numbered from 1 to n. Ea
h edge in this tree

has one of n 
olors. A path in this tree is 
alled a rainbow if all edges adja
ent to the path have di�erent


olors. Also, a node is 
alled good if every simple path with that node as one of its endpoints is a rainbow

path. (A simple path is a path that does not repeat any vertex or edge.)

Your team is to write a program that will �nd all the good nodes in the given tree.

The �rst line of input 
ontains a single integer n (1 � n � 50;000). Ea
h of the next n�1 lines 
ontains

three spa
e-separated integers a

i

, b

i

, and 


i

(1 � a

i

; b

i

; 


i

� n; a

i

6= b

i

), des
ribing an edge of 
olor 


i

that


onne
ts nodes a

i

and b

i

. It is guaranteed that the given edges form a tree.

Your program should �rst print a line 
ontaining k, the number of good nodes. On the next k lines, print

the indi
es of all good nodes in in
reasing numeri
al order, one per line. No leading or trailing whitespa
e

or leading zeroes are to appear on an output line.

(Note that for the sample below, node 3 is good be
ause all paths that have node 3 as an endpoint are

rainbow. In parti
ular, even though the path 3 ! 4 ! 5 ! 6 has two edges of the same 
olor (i.e. 3 ! 4,

5! 6), it is still rainbow be
ause these edges are not adja
ent.)

Sample Input

8

1 3 1

2 3 1

3 4 3

4 5 4

5 6 3

6 7 2

6 8 2



Problem 5

Rainbow Roads (
ontinued)

Output for the Sample Input

4

3

4

5

6



2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 6

Haiku

A haiku is a three-line poem in whi
h the �rst and third lines 
ontain �ve syllables ea
h, and the se
ond

line 
ontains seven syllables.

An example of a haiku is:

Blue Ridge mountain road.

Leaves, glowing in autumn sun,

fall in Virginia.

Write a program to examine a line of English text and and attempt to render it as a haiku. This will

require 
ounting the syllables in the words of the text, whi
h should be done a

ording to the following rules:

1. A word 
onsists of a maximal string of alphabeti
 
hara
ters (upper and/or lower-
ase), followed by

zero or more non-blank, non-alphabeti
 
hara
ters.

a. Upper/lower 
ase distin
tions are ignored for the purpose of 
ounting syllables, but must be retained

in the �nal output.

b. Non-alphabeti
 
hara
ters are ignored for the purpose of 
ounting syllables, but must be retained

in the �nal output.

2. The 
hara
ters \A", \E", \I", \O", \U", and \Y" are vowels. All other alphabeti
 
hara
ters are


onsonants, with these ex
eptions:

a. The 
hara
ter sequen
e \QU" is 
onsidered to be a single 
onsonant.

b. The letter \Y" is 
onsidered to be a 
onsonant if it is immediately followed by one of the other

vowels.

3. Every word has at least one syllable. For example, \Fly",\I", and \Ssshhh!" are words of one syllable.

4. Ea
h (maximal) string of one or more 
onsonants with at least one vowel to either side indi
ates a division

into separate syllables. For example, \strong" has one syllable, \stronger" has two, and \bookkeeper"

has three. \player" has two syllables (be
ause the \y", being followed by an \e", is 
onsidered a


onsonant). There are two ex
eptions to this rule:

a. An \E" appearing as the last alphabeti
 
hara
ter in a word is silent and should be ignored unless

the next-to-last alphabeti
 
hara
ter is an \L" and the 
hara
ter immediately before that is another


onsonant. For example, \ale" and \pale" have one syllable. \able" has two.

b. An \ES" sequen
e at the end of the alphabeti
 sequen
e in a word does not add a syllable unless

pre
eded by two or more 
onsonants. For example, \ales" and \pales" have one syllable. \wit
hes"

and \verses" have two.

Input to your program will 
onsist of a series of lines of text 
onsisting of a sequen
e of one or more

words (as de�ned above) separated by single spa
es. The total line length will not ex
eed 200 
hara
ters.

If the words in a given input line 
an be divided into a haiku, then print the haiku as three lines of

output. Ea
h line should be left-justi�ed. A single spa
e should separate ea
h pair of words within a line.

Ea
h word should appear exa
tly as it does in the input, preserving 
ase and any terminal non-alphabeti



hara
ters. Do not split a word a
ross multiple lines.

If the words in the input 
annot be divided into a haiku, print the line of input with no 
hanges.



Problem 6

Haiku (
ontinued)

Sample Input

Blue Ridge mountain road. Leaves, glowing in autumn sun, fall in Virginia.

Who would know if we had too few syllables?

International 
ontest- motivation high Programmers have fun!.

Output for the Sample Input

Blue Ridge mountain road.

Leaves, glowing in autumn sun,

fall in Virginia.

Who would know if we had too few syllables?

International


ontest- motivation high

Programmers have fun!.



2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 7

Law 11

The Laws of the Game des
ribe the rules to so

er (internationally known as \football"). Of the

seventeen enumerated laws, O�side as des
ribed by Law 11 is perhaps the most 
ontentious. Law 11 takes

barely more than a single page to des
ribe. In short, o�side 
onsists of two 
onditions: the o�side position,

and a state of play that turns the o�side position into an o�ense. To 
onsistently enfor
e o�side position at

youth so

er mat
hes (and generally rat
het down the poor sportsmanship of parents who 
onsider themselves

smarter than the referees, but too sel�sh to serve as referees themselves), your team has been 
onta
ted to

implement a program for o�side position determination.

The o�side position may be stated as

a) any part of the head, body, or feet (but not hands or arms) is in the opponents' side of the �eld

(ex
luding the halfway line), AND

b) any part of the head, body, or feet (but not hands or arms) is 
loser to the opponents' goal line than

BOTH the ball and the se
ond-to-last opponent.

Your program is to treat all lines as one-dimensional, with the ball and players treated as points.

Condition (a) is satis�ed anytime the point representing a player is in the opponent's half of the �eld. (A

player at mid-�eld (x = 0) is not in the opponent's half of the �eld.) Your program will unburden the referees

from having to tra
k 22 players spread a
ross the playing �eld. This frees the referees to make the judgment


alls that humans are better at.

Your program must take time-series data for the x; y position of the ball and the x; y positions of 22

players (11 on ea
h team). Input to your program starts with a line des
ribing the length, L, and width,

W , of the so

er pit
h, measured in meters. L and W are separated by a 
omma. The remaining input is a

series of three-line groups. Within ea
h group, the �rst line will 
ontain the timestamp (\mm:ss", minutes

and se
onds into the half), followed by the x and y 
oordinates of the ball. These �elds are separated by


ommas. The se
ond line 
ontains 22 
omma-separated values, 11 x; y pairs representing the 
oordinates of

players numbered 1 through 11 on team \Left", defending the goal on the left side of the �eld. The third line


ontains 22 
omma-separated values as well; these are the x; y 
oordinates of players numbered 1 through

11 on team \Right", defending the goal on the right side of the �eld.

In Figure 1, team \Left" defends the goal at x = �L=2. Team \Right" defends the goal at x = L=2.

The 
enter of the �eld is at 
oordinate (0; 0). Players stepping out of bounds are still 
onsidered in play;

spe
i�
ally, players beyond the goal lines (jxj > L=2) are 
onsidered to be at the respe
tive goal line for

o�side position determination.

Only for time points (lines) that have players in o�side position(s), print a line of output. Begin the

line with the mm:ss timestamp of the data. If there are any players in o�side positions for team Left, print

a single spa
e, followed by \Left". For ea
h player on team Left that is in an o�side position, print a single

spa
e followed by the number of that player, 1 through 11, in as
ending order by player number. Similarly,

if there are any players in o�side positions for team Right, print a single spa
e, followed by \Right". For

ea
h player on team Right that is in an o�side position, print a single spa
e followed by the number of that

player, 1 through 11, in as
ending order by player number.



Problem 7

Law 11 (
ontinued)

Sample Input

90,50

00:00,0,25

-45,25,0,25,-10,20,-10,21,-10,22,-10,23,-10,24,-10,25,-10,26,-10,27,-10,28

45,25,10,20,10,21,10,22,10,23,10,24,10,25,10,26,10,27,10,28,10,29

00:01,-5,25

-45,25,15,25,-10,20,-10,21,-10,22,-10,23,-5,24,-10,25,-10,26,-10,27,-10,28

45,25,10,20,10,21,10,22,10,23,10,24,10,25,10,26,10,27,10,28,20,29

00:02,10,25

-45,25,20,25,-10,20,-10,21,-10,22,-10,23,-5,24,-10,25,-10,26,-10,27,-10,28

45,25,10,20,10,21,10,22,10,23,10,24,10,25,10,26,10,27,10,28,15,29

00:03,15,25

-45,25,20,25,-10,20,-10,21,0,22,-10,23,-5,24,-10,25,-10,26,-10,27,-10,28

45,25,10,20,10,21,10,22,10,23,10,24,10,25,10,26,10,27,10,28,15,25

00:04,0,25

-45,25,15,26,-10,20,-10,21,10,22,-10,23,-5,24,-10,25,-10,26,-10,27,-10,28

45,25,10,20,10,21,10,22,10,23,10,24,10,25,10,26,10,27,10,28,15,25

00:05,-5,24

-45,25,20,26,-10,20,-10,21,20,22,-10,23,-5,24,-10,25,-10,26,-10,27,-10,28

45,25,10,20,10,21,10,22,10,23,10,24,10,25,10,26,10,27,10,28,15,25

00:06,10,25

-45,25,15,26,-10,20,-10,21,-10,22,-10,23,-5,24,-10,25,-10,26,-10,27,-10,28

45,25,10,20,10,21,10,22,10,23,10,24,10,25,10,26,10,27,10,28,15,25

Output for the Sample Input

00:02 Left 2

00:03 Left 2

00:05 Left 2 5

Figure 1. So

er �eld (pit
h) with 
oordinates.



2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 8

Juggling for Nerds

Juggling for Nerds is a book in progress that tea
hes 
omputer nerds how to juggle. The entire 
hapter

on one-handed juggling simply states \One-handed juggling is a trivial matter of:

(a) 
hoosing the number of identi
al obje
ts to juggle,

(b) determining how fast you are 
apable of 
at
hing and tossing a single obje
t,

(
) determining how fast you 
an reposition your hand to 
at
h a single falling obje
t,

(d) disregarding atmospheri
 drag,

(e) using a Newtonian model of Earth's gravity at sea level, and

(f) doing the math. There is ample spa
e in the margin of this page to do the math."

Your program must implement instru
tion (f). Input to your program will be a series of lines with four

values per line, separated by whitespa
e. The �rst value starts at the beginning of the line; it represents n,

the number of identi
al obje
ts to juggle. The se
ond value is m, the mass of any one obje
t, in kg. The

third value is t


t

, the time in se
onds the juggler 
an 
at
h then toss the obje
t (from the moment of 
onta
t

with the falling obje
t to the moment the obje
t separates from the hand). The fourth value is t

r

, the time

in se
onds the juggler takes to reposition to 
at
h another obje
t.

For ea
h line of input, your program is to produ
e a single line of output spe
ifying h

t

, how high to

throw ea
h obje
t to a
hieve the fastest possible juggling. h

t

is measured from the \
at
h-release plane," an

arbitrary plane above and parallel to the ground unique to ea
h nuggler (nerd juggler). Express h

t

in units

of meters, rounded to two pla
es after the de
imal point. Do not put any leading or trailing whitespa
e on

output lines.

Your Newtonian model of gravity states that

h =

1

2

gt

2

where h is the the distan
e an obje
t falls from rest in t se
onds. g is gravitational a

eleration, 9:8m=s

2

.

There will be no more than 20 obje
ts to be juggled. You may assume that the nuggler is strong enough

to throw the obje
ts to the required height.

Sample Input

1 0.4 0.5 0.3

2 0.6 0.45 0.1

Output for the Sample Input

0.11

0.52





2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 9

Long Long Strings

DNA editing is done as a series of insert and delete operations. To store and edit DNA sequen
es your


ompany has developed a LongLongString 
lass that 
an store strings with up to N = 10 billion (10

10

)

alphanumeri
 
hara
ters. The 
lass supports two basi
 operations:

Ins(p; 
) - inserts the 
hara
ter 
 at position p; (0 � p � length(string))

Del(p) - deletes the 
hara
ter at position p; (0 � p < length(string))

For insertion, p = 0 indi
ates insertion at the beginning of the DNA string, and p = length(string) indi
ates

appending at the end of the string.

Your job is to write a program that 
ompares two DNA editing programs to determine if their e�e
ts

are identi
al|that is, if the editing programs are applied independently to any suÆ
iently long string, they

would result in the same string. The programs are of size L

1

and L

2

, (0 � L

i

< 10000). For example:

Del(1) Del(2) and Del(3) Del(1) are identi
al.

Del(2) Del(1) and Del(1) Del(2) are di�erent.

Ins(1,x) Del(1) and the empty program are identi
al.

Ins(14,b) Ins(14,a) and Ins(14,a) Ins(15,b) are identi
al.

Ins(14,a) Ins(15,b) and Ins(14,b) Ins(15,a) are di�erent.

Input to your program is a series of DNA editing 
omparisons. Ea
h 
omparison begins with a line


ontaining the integer N , the initial length of the DNA sequen
e (0 � N � 10

10

). The following lines


ontain two DNA editing programs, with ea
h program ended by a line with only the letter 'E'. Ea
h DNA

program is zero or more operations. Any operations are one per line of the form

I p 
 - Insert 
hara
ter 
 at position p. 
 is an alphanumeri
 
hara
ter.

D p - Delete 
hara
ter at position p.

For ea
h DNA editing 
omparison, print a line 
ontaining only the string \Identi
al" if the two programs

produ
e the same resulting string, or only the string \Di�erent" if the two programs produ
e di�erent strings.



Problem 9

Long Long Strings (
ontinued)

Sample Input

10

D 1

D 2

E

D 3

D 1

E

5

D 2

D 1

E

D 1

D 2

E

31

I 1 x

D 1

E

E

255

I 14 b

I 14 a

E

I 14 a

I 15 b

E

255

I 14 a

I 15 b

E

I 14 b

I 15 a

E

Output for the Sample Input

Identi
al

Different

Identi
al

Identi
al

Different



2017/2018 SOUTHERN CALIFORNIA REGIONAL

ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 10

Matrix Multipli
ation

Winning an ICPC regional has expanded your employment opportunities. The keywords \ICPC Final-

ist" have been 
agged by the resume �lters set up by Numeri
al Con
o
tions, In
., an early stage startup

aiming to disrupt the market for 
loud-based linear algebra servi
es. As a result you have been o�ered a

position as a \Matrix Ninja Intern", working on the next generation matrix multipli
ation library fun
tions.

When it 
omes to matrix multipli
ations, the 
ompany has already solved the problem for N = 2. Their

fun
tion Mul(A;B) for multiplying two matri
es is dominating all ben
hmarks. The 
ompany's next goal is

to be the best at multiplying N matri
es in a row for any N . The plan is to leverage the existing te
hnology

and simply 
all Mul(A;B) N � 1 times.

As you re
all from Linear Algebra 101, the produ
t of two matri
es A[n;m℄, and B[m; l℄, is a matrix

X [n; l℄. Things be
ome more interesting with three or more matri
es, be
ause even though matrix multipli-


ation is asso
iative, that is, (A�B)�C = A�(B�C), di�erent ways of 
omputing the �nal produ
t require

di�erent amounts of intermediate storage. For example, if we have A[1000; 2℄, B[2; 1000℄, and C[1000; 2℄,


omputing A � B �rst requires a matrix with 1000 � 1000 = 1000000 elements to be allo
ated, whereas


omputing B � C �rst requires a matrix with only 2� 2 = 4 elements to be allo
ated.

Your �rst assignment at your new job is to implement a helper fun
tion that, given the sizes of the N

matri
es to be multiplied together, determines how to 
ompute the produ
t allo
ating as little intermediate

storage as possible. Assume that all intermediate storage 
annot be reused and that it will be deallo
ated

only after the �nal produ
t is 
omputed.

For this problem, the input will 
onsist of lines des
ribing individual test 
ases in the [n

1

;m

1

℄� [n

2

;m

2

℄�

::: � [n

N

;m

N

℄ format, where 2 � N � 1000, 1 � m

i

� 10000, and 1 � n

i

� 10000.

For ea
h input line, your program is to print the number of elements that need to be allo
ated as

intermediate storage. Your program is not to 
ount the input matri
es or the �nal produ
t as intermediate

storage. No leading or trailing whitespa
e or leading zeroes or signs are to appear on output lines.

Sample Input

[1000,2℄*[2,1000℄*[1000,2℄

[20,30℄*[30,20℄

[2,1℄*[1,1℄*[1,1℄*[1,1℄*[1,2℄

[22,22℄*[22,55℄*[55,76℄*[76,29℄

Output for the Sample Input

4

0

4

2233


