
2011/2012 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 1
Change by Mass

Your team is working on software for automated check-out machines (such as are found in supermarkets
and large home-improvement stores). The usual change-making process for these machines minimizes the
number of coins dispensed when dispensing amounts under one dollar. However, a customer wants to change
the logic in the machines to minimize the mass of the coins dispensed (to “lighten the load” for their
customers). Minimizing the number of coins dispensed remains a secondary goal.

The masses of United States coins with values of less than one dollar are as follows:

Cent (“Penny”) 2.500 g
Five Cents (“Nickel”) 5.000 g
Dime 2.268 g
Quarter Dollar 5.670 g
Half Dollar 11.340 g

Your team is to write a program that will, given an amount in cents, determine the coins to be dispensed
that will minimize the total mass of the dispensed coins, and secondarily minimize the number of coins
dispensed. Half-dollar coins may or may not be available, as they do not circulate to the extent the other
coins do. You may assume that the check-out machines will have adequate supplies of coins of the other
denominations.

Input to your program will be a series of change requests, one per line. Each change request will consist
of the amount to be dispensed (integer cents, in the range 1–99 inclusive) starting in the first column,
followed by a single space and the number of half-dollar coins in the machine (as an integer ≥ 0). Input will
be terminated by the end-of-file.

For each request, your program should produce a line containing the coins to be dispensed. The output
line is to show the denominations being dispensed in decreasing order, in the format “nxd” (meaning n

coins of denomination d are to be dispensed). For example, 35 cents would be dispensed as “1x25 1x10”.
Denomination entries are to be separated from each other by single spaces, and no leading or trailing
whitespace is to appear on an output line.

Sample Input

35 1

1 0

18 3

60 0

Output for the Sample Input

1x25 1x10

1x1

1x10 1x5 3x1

2x25 1x10

2011/2012 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 2
Planet “difftime”

NASA has established communications with a new planet discovered by Dr. Ridgemont. This planet,
coincidentally, has a calendar very similar to the calendar we use here on Earth. But the minutes, hours,
days, and so forth are all of a different duration. For example, on Ridgemont’s Planet, a minute might last
54 seconds, there might be 61 minutes per hour, 23 hours per day, and 340 days per year. The year is split
into months, and as on Earth, each month may have a different number of days. The inhabitants have set
the calendar this way so that there is no need to handle leap years or daylight savings time, but other than
that everything is different.

NASA software engineers want to practice good code reuse, so naturally they want to port their Linux
source code into the communications system they use to talk to the inhabitants on this distant world. Much
of their software utilizes the function difftime, which takes two specifications of a date and time and returns
the number of seconds between them. For example, on Earth, if I ask for the difference between 12:35:00 on
one day and 12:35:15 on the next day, the answer is 86,415. This represents one days worth of seconds (24
hours times 60 minutes times 60 seconds is 86,400) plus an additional 15 seconds.

For example, suppose that Ridgemont’s Planet has 13 months and the number of days in each month
as shown in the table below. There are a total of 399 days in a year.

Month 1 2 3 4 5 6 7 8 9 10 11 12 13
Days 30 30 31 31 31 31 31 31 31 31 31 30 30

The planet has 23 hours per day, each hour has 53 minutes, and each minute has 61 seconds.

A NASA engineer wants to know the difference between 22:30:05 on 02/29/11 and 10:00:00 on 03/01/11.
By applying the above values, the engineer can determine that the elapsed time is 108,087 “planet seconds.”

Your team is to write a program that reads the characteristics of time on a distant planet and two
date/time specifications, and then prints the difference between the two times in seconds. You are guaranteed
that the second date/time specification is not chronologically before the first.

There will be an arbitrary number of cases to consider. The input for each case will begin on a new
line and consist of a series of values that span one or more lines. Each series will contain the following data
items in the order specified, separated by one or more spaces and/or newlines. The allowable range of values
for each item is given in parentheses following the item.

• The number of seconds in a minute (1–100).
• The number of minutes in an hour (1–100).
• The number of hours in a day (1–100).
• The number of months in a year (1–99), followed by that many integers, each of which represents the

number of days in the corresponding month (1–99).
• A start date/time specification in the format “MM/DD/YY-HH:MM:SS”.
• An end date/time specification in the format “MM/DD/YY-HH:MM:SS”.

Like on Earth, months and days are numbered starting with one, and years, hours, minutes, and seconds
are numbered starting with zero. The series following the input for the last case will contain a single zero.

For each case, your program is to print the difference between the start and end date/time specifications
in seconds. Each result is to be printed on a line by itself, starting in the first column, without any trailing
whitespace.

Problem 2
Planet “difftime” (continued)

Sample Input

61 53 23 13 30 30 31 31 31 31 31 31 31 31 31 30 30 02/29/11-22:30:05

03/01/11-10:00:00

60 60 24 12 31 28 31 30 31 30 31 31 30 31 30 31

11/12/11-13:30:00 11/12/11-18:30:00

0

Output for the Sample Input

108087

18000

2011/2012 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 3
Graph Clue

Your team is competing in the annual Swamp County Scavenger Hunt. One of the clues must be

discovered from a file that contains representations of graphs: the clue is the number of unique graphs in

that file.

What counts is the shape of the graph, not the labels of the vertices or the way it is drawn. For example,

the graphs of figures 1 and 2 are the same shape and they are said to be isomorphic. There is a way to

relabel the vertices in figure 1 and redraw the graph so it is identical with figure 2. The graph in figure 3,

on the other hand, cannot be made the same as the graph in figure 1 in spite of having the same number of

edges and vertices.

The graphs are simple graphs: they are undirected and have no vertex connected to itself or multiple

edges between any two vertices.

A simple graph with n vertices can be represented by an adjacency matrix with Aij = 1 if there is an

edge between vertex i and j. These are undirected graphs and no vertex is connected to itself so Aij = Aji

and Aii = 0. Thus the diagonal elements A11, . . . , Ann are all zero and the matrix elements below the

diagonal are computable from those above it.

The adjancency matrix for the graph in figure 1 is:

010110

101001

010110

101001

101001

010110

The input representation for a graph is the part of the adjacency matrix above the diagonal from left to

right starting at the top row. Thus the input for the graph in figure 1 is:

101101001110011

Input to your program will be a series of lines ended by end-of-file. Each line is a graph representation

as described above. There will be at most 100 lines and each graph will have between 2 and 8 vertices.

Print the number of unique graphs on one line with no leading zeroes or spaces and no trailing spaces.

Sample Input

101101001110011

001110111111000

111111

111001010001111

Output for the Sample Input

3

2011/2012 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 4
Bond Dutch Auctions

A bond is a debt instrument issued by a corporation or public entity to borrow money. Instead of (or
in addition to) borrowing from banks, a corporation can issue bonds and sell them to investors. Bonds are
issued in units of $1,000 and mature after a stated period of time (usually measured in years). A bond
carries a given annual interest rate. Every six months, simple interest is paid on the bond at the stated rate,
and at maturity the $1,000 principal is repaid as well. The interest payments are referred to as “coupon
payments”—a hold-over from the days when bondholders turned in paper coupons to receive their interest
payments.

For example, assume InDebted Corporation wants to borrow $100 million. They would issue 100,000
$1,000 bonds, setting the interest rate and maturity on them at a rate they think investors will accept (in
this case, 4% for four years). Every six months, the holder of each bond will receive $20 in interest, and at
the end of four years each bond holder will also receive the $1,000 principal. Every coupon payment is the
same, even though the number of days between payments may vary from one period to another.

A bond holder may decide to sell his or her bond(s) before maturity. The issue becomes one of deter-
mining a fair price for the bonds. If interest rates have fallen, the bond may be worth more than the original
$1,000 (the $20 payments every six months until maturity would be more attractive than the alternatives.)
Conversely, if rates have risen, the bond may be worth less (since the $20 semi-annual payments are less
attractive.)

One way to deal with this is to sell the bonds at what is known as a “Dutch Auction.” These auctions
are now held on-line. A quantity of bonds from a given issuer are offered with a stated interest rate and
maturity. Bidders place bids for bonds, offering to take one or more of the bonds at either a given price
(expressed as a percentage of the original $1,000 “par value”), or at a given yield (the effective annual interest
rate taking into account the semi-annual interest payments and the $1,000 principal.)

The objective is to determine the “market-clearing” price—the price at which the last of the bonds
would be sold. The market-clearing price is determined by ranking the offers in descending order of price,
then assigning the requested number of bonds to each bidder until the last bond is sold. The price at which
the last bond would be sold is the market-clearing price. Every buyer pays the market-clearing price for his
or her bond(s), so everyone who is awarded bonds in the auction gets the same deal. If the total number of
bonds bidders offer to buy is less than the total available for sale, every bidder will receive the bonds (s)he
requested.

Continuing with our example, assume that 50 bonds of InDebted Corporation are available with a
coupon rate of 4% and a maturity of three years from the effective date of the sale (known as the “settlement
date.”) Bonds are priced as a percentage of the $1,000 par value, with up to six digits after the decimal
point. Bids might come in at the following prices:

Quantity Price

20 101.96
20 101.885
15 101.78
10 101.75
5 101.6505

After sorting the list of offered prices in descending order, as has been done in the example above, bonds are
assigned to bidders. The first two bidders would receive all the bonds they requested, which would take 40
of the 50 bonds available. The third bidder would receive 10 of the 15 bonds (s)he requested—this bidder
also set the market clearing price at 101.78. Each bidder who was assigned bonds will pay $1,017.80 for each
bond (101.78% of $1,000). The bidders lower on the list are unsuccessful and get nothing.

Problem 4
Bond Dutch Auctions (continued)

Bidders may also set their prices by offering a stated “yield to maturity” (YTM). When the bond is
originally issued, the yield to maturity is the stated annual interest rate (or “coupon rate.”) The yield to
maturity is the equivalent rate that a bidder will receive if the bond is purchased at the offered price. If the
bidder offers less than the $1,000 par value, the YTM is greater than the coupon rate; if the bidder offers
more, the YTM is less than the coupon rate.

This can also be expressed as the following formula:

Price =
c

(1 + r)
+

c

(1 + r)2
+

c

(1 + r)3
+ · · · +

c

(1 + r)n

+
f

(1 + r)n

(1)

where c is the coupon payment in dollars, f is the par value in dollars (always 1,000), n is the number of
coupon payments remaining, and r is the rate per coupon (half the YTM rate for semi-annual coupons).

Consider the four-year 4% bond described above. Table 1 shows the yields to maturity if the bidder
pays $990, $1,000, and $1,010 for the bond after the bond is one year old.

Your team is to write a program that will, given the terms of a series of bond auctions and the bids
for each auction, determine each auction’s market clearing price and the effective yield to maturity at that
price. Bonds sold at these auctions will be settled on coupon payment dates.

Input to your program will be a series of bond auctions terminated by the end-of-file. Each auction will
begin with a single line containing fields separated from each other by single spaces containing the following
values:

• year, month, and day of the settlement date of the auction,
• year, month, and day of the final maturity of the bond,
• the coupon annual interest rate in percent,
• and the number of bonds available.

This will be followed by a series of bids, one per line. Each bid will contain an offer to buy a quantity of
bonds, the letter “p” for price or “y” for yield, and the price or yield offered. Fields will be separated from
each other by single spaces. There will be at least one and at most 200 bids in any auction. The last bid
will be followed by an empty line.

For each auction, your program is to print the market-clearing price (as a percentage of par value,
rounded to six places after the decimal point), a single space, and that price’s yield to maturity (rounded
to four places after the decimal point, followed by a percent sign). No leading or trailing whitespace is to
appear on an output line.

Problem 4
Bond Dutch Auctions (still continued)

Sample Input

2011 11 01 2014 11 01 4 50

15 p 101.780

10 p 101.750

50 p 101.650

5 p 101.480

10 p 102.005

10 y 3.883

20 p 101.885

10 p 101.960

2011 11 12 2014 11 12 4 25

10 y 4

10 p 99

10 p 101

Output for the Sample Input

101.780000 3.3712%

99.000000 4.3592%

Problem 4
Bond Dutch Auctions (still continued)

�����������	
���
��
�������������
�������

������ ������
�� �����
 �
� ����!����

� "� �#��������� �#�"������� �$#%�&'�(���

" "� �#��������� �$#""((&%���

("� �#�%�"�'��� �'#'�%��&���

� "� �#�'"�("�%� �'#�&%$�$���

) "� �#����'�'�(�'#���%�%���

% "� �#�"%�%"��$ �&#&)$�"'���

���� ���� �#�"%�%"��$ ''&#$&�('"���

����� ����#���������

�����������	
���
��
�������������
��$$�

������ ������
�� �����
 �
� ����!����

� "� �#()$"�'$�� �#�"�&$%�$) �$#)&((&%'�$

" "� �#����%&"%� �$#�))')����

("� �#�%%'"('�$ �'#&�&"(&�(%

� "� �#�$��&%��(�'#(�&((&�((

) "� �#��('()')(�&#$))$%&�%"

% "� �#�('��(�") �&#)&"$�))&"

���� ���� �#�('��(�") '&'#%�&"&')'"

����� $'$#$$$$$%&�)

�����������	
���
��
�������������
�������

������ ������
�� �����
 �
� ����!����

� "� (#%�)�'(&�� �#��'"")��$ �$#%�"��%�"'

" "� �#�(%&'(��� �$#"$��($%'�

("� �#�))%&''�$ �'#$�)�)%"%(

� "� �#�&�$�'$$' �'#%�%�)(��"

) "� �#�$�)�$'�& �'#"&(��$&��

% "� �#����)&&�' �&#$�)$�&"''

���� ���� �#����)&&�' '$&#"$&(%�('%

����� ���$#$$$$$%�$�

Table 1. Table showing yields to maturity for various offer prices for the same bond.

2011/2012 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 5
Triangular Numbers

A triangular number numbers the objects that can form an equilateral triangle, as shown in the diagram
in Figure 1. The nth triangle number is the number of dots in a triangle with n dots on a side; it is the sum
of the n natural numbers from 1 to n. The sequence of triangular numbers is:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . . (1)

The triangle numbers are given by the following explicit formula:

Tn =

n∑

k=1

k (2)

Your team is to write a program that will, given an integer value, determine if it is a triangular number.
If the given value is a triangular number, determine the number of dots on a side.

Input to your program will be a series of lines. Each line contains an integer N , 0 < N < 109 with no
leading zeroes or spaces and no trailing spaces.

Your program is to determine if each integer N is a triangular number. If it is, print a line containing
the number of dots on a side. If it is not a triangular number, print a line containing the string “bad”. In
both cases print the answer with no leading zeroes or whitespace and no trailing whitespace.

Figure 1. Diagram of the first six triangular numbers.†

Sample Input

55

1

587

499500

Output for the Sample Input

10

1

bad

999

† Text and diagram from http://en.wikipedia.org/wiki/Triangular_number.

2011/2012 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 6
Pavement Signage

Words and symbols painted on roads must be elongated because drivers view roads at an angle. As
seen in Figure 1, a safety engineer uses an assumed eye level, h, and designates how big the symbol should
appear at a distance d. The apparent size is expressed as an angle of field-of-view, α.

Your team is to write a program that will take characters and symbols represented as a series of (x, y)
coordinates and produce the necessary stretched coordinates to produce a stencil for painting the image on
a street surface. Referring to Figure 1, the stretched figure on the pavement (segment CE) represents an
unstretched image that appears as a flat image whose bottom touches the pavement at distance d (segment
CD).

Input to your program consists of a line describing Figure 1, followed by the vertices of one or more
symbols. The first line contains three floating point values, h, d, and α, separated by whitespace. h and d

are in meters, whereas α is expressed in degrees. You may assume that the road is perfectly flat, and that
α will be in range such that segment AE will intersect road BCE.

Symbols are (x, y) coordinate pairs, one pair per line. The x and y values are separated by whitespace.
The symbol definition is terminated by a the values x = −1 and y = −1. The (−1,−1) specification is not

a part of the symbol. The last vertex in a symbol ((0.5, 0.6) in the sample) connects back to the first vertex
((0.7, 0.6) in the sample). There will never be more than twenty vertices in a symbol.

The technician who measures the unstretched symbol aligns it such that the leftmost point(s) touch the
y-axis, and the bottom most point(s) touch the x-axis.

Output is to be a list of stretched vertices, expressed as coordinate pairs, one pair per line. Horizontal
perspective is not corrected for: scale only the y values. Print the x and y values rounded to two places
after the decimal point. Separate the x and y values with exactly one space. Place no leading whitespace
before the x value nor any trailing white space after the y value. Print an empty line after the stretched
coordinates for each symbol (including the last).

Figure 1. Diagram showing the unstretched symbol CD, the road BCE, h, d, and α.

Problem 6
Pavement Signage (continued)

Sample Input

1.5 8 6.0

.7 .6

.35 1

0 .6

.2 .6

.2 0

.5 0

.5 .6

-1 -1

0 0

0.5 0.5

1 0

-1 -1

Output for the Sample Input

0.70 4.20

0.35 10.56

0.00 4.20

0.20 4.20

0.20 0.00

0.50 0.00

0.50 4.20

0.00 0.00

0.50 10.56

1.00 0.00

2011/2012 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 7
Patch Installer

Your start-up software company, though staffed with brilliant programmers, has found that errors
creep into even the best production software. The company has assigned your team the task of writing an
automated patch installation module to replace the current manual process.

Your team is to write a program that will, given a list of all patch identifiers (patch IDs as integers
1–999) and their relationships, match this list against one or more software configurations to produce a list
of patches to apply in sequence.

Patches may have “prerequisites” (other patches that must be installed before this patch can be in-
stalled). The patch sequence must take the prerequisites into account. Since current installations have been
applying patches manually, there may be systems with patch states that do not meet all the prerequisite
requirements. Your program should apply all patches needed to meet any missing prerequisites. Although
patch IDs are assigned in order, they are not necessarily released chronologically, so a lower patch ID may
depend on patches with higher IDs. Some patch IDs may be skipped as well.

It is also possible that multiple patches may exist to address the same issue for different systems. Only
one such patch can be installed in a given configuration. These appear as “conflicts” in the patch definitions.
Normally, the patch with the lowest numeric patch ID should be installed, unless one of the conflicting
patch IDs has already been installed manually. Conflicting patch IDs will appear as negative values in the
prerequisite list for a given patch. Each conflicting patch will list the patches it conflicts with—for example,
if patch 2 conflicts with patch 6, patch 6 will also conflict with patch 2.

The company’s brilliant programmers consolidate patches that would be mutually dependent on each
other into single patches. No two or more patches will have each other as co-requisites.

Input to your program will consist of a list of patch definitions followed by a series of software config-
urations. The patch definitions will consist of lines of up to 80 columns. Each line will begin with a patch
ID and be followed by zero or more patch IDs of prerequisites or conflicts. Patch IDs are separated from
each other by one or more spaces. The prerequisite patch IDs are listed as positive integers, and conflicting
patch IDs are listed as negative integers. Every patch ID will appear in the definition list. If more than
80 columns are needed to list all the patch prerequisites and conflicts, additional lines will be used—these
continuation lines will start with an ampersand in place of the numeric patch ID. This section ends with a
line containing only the string “end”.

The patch definitions are followed by a series of one or more software patch states. Each software patch
state consists of zero or more lines containing all the patches applied so far, separated by one or more spaces
and/or new-lines. A software patch state also ends with a line containing the string “end”.

For each software patch state, produce a list of patches to download and apply on a single line with no
leading or trailing whitespace. Print the patches in installation order, separated from each other by single
spaces. If no patches need to be installed, print a line containing only the message “nothing to install”.

For a given initial patch state, there may be more than one possible patch application sequence that
meets the given prerequisite and conflict requirements—any sequence that meets all the requirements is
acceptable.

Problem 7
Patch Installer (continued)

Sample Input

1 2 3 4

2 4 5 -6

3

4

5

6 4 5 -2

7

8 7

9

end

1 2

3 4

end

6

end

1 2 3 4

5

end

7 8 9

end

Output for the Sample Input

5 7 9 8

3 4 5 7 9 8

7 9 8

3 4 5 2 1

2011/2012 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 8
Mall Map Maze

Swamp County Mall is the largest mall in the county. Customers keep getting lost and weary wandering
around the mall looking for stores. Thankfully there is a map of the mall to help customers get around.

The map is in the form of a board game made up squares represented by ASCII characters. The
characters in the map are as follows:

• “x” represents a wall or column. A square with an “x” cannot be entered or traversed.
• A space represents a square that can be entered.
• Digits “1” through “9” are used to designate beginning and ending points of paths.

◦ Digits are located in squares that can be traversed.
◦ The beginning and end of a desired path are indicated by the same digit; e. g. (1, 1).
◦ A given digit is in only one pair.

• There is no limit to the number of people that can be in a single available square at a given time.
• The input will start with at most a single digit in a given square.
• The board is rectangular and its edges are walls (“x”).

Your team is to write a program that will find the shortest distance between the squares marked with
the same digit. The distance is the number of moves to get from one to the other. A move is one square
left, right, up, or down, but not diagonally. Thus the distance in “xx11xx” is one.

Input to your program will be a map in the format described above followed by end-of-file. There will
be at most 100 characters in a line and at most 100 lines. Figure 1 shows the sample input as a grid for
clarity.

For each digit pair in the map, your program is to print the start/end digit, one space, and the length of
the shortest legal path between squares with that start/end digit. Print the length with no trailing blanks.
If there is no path, report “no path” as the distance. Report the result in numerical order of the start/stop
digit, lowest first. No leading or trailing whitespace is to appear on an output line.

Figure 1. Sample Input in grid form.

Problem 8
Mall Map Maze (continued)

Sample Input

xxxxxxxxxxxxx

x 2 x x x8x x

xx1 xxxxxxxx

x x 2 x x x1x

x x 8 x

xxxxxxxxxxxxx

Output for the Sample Input

1 12

2 4

8 no path

