2009/2010 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 1
Reverse Engineering Alchemy

Frederico da Vinci (one of Leonardo’s less talented cousins) operated a successful Alchemy Emporium
in Venice for many years. Recently a competing shop, Borgia Potions & Notions, began selling an entire line
of particularly effective alchemical potions.

“I tell you,” said Frederico’s Chief Alchemist, “if we only knew the basic ingredients and their propor-
tions, I'm sure we could figure out a cheaper way to produce the same potions.” Frederico smiled and said,
“As it happens, I have bribed a clerk at Borgia’s. He does not know how the potions are made, but he is
responsible for ordering the raw ingredients and for stocking the resulting products in the shop. He sends
me regular messages telling me how many units of various ingredients they have used and how many doses
of each potion they produced from those ingredients.”

Frederico showed the alchemist a small piece of paper on which was written “A 23 B 17 f 15 h 19 q
47.” The alchemist asked “What is this?” Frederico explained, “We had to keep the messages short and so
we agreed on a code. The upper-case letters stand for potions that were produced and added to the store’s
stock. ‘A’ for example, is their Guaranteed Wart Remover, and he is telling us that they have created 23
doses of it. The lower-case letters stand for the ingredients used to make the potions. ‘f’, is, let me think, ah
yes, powdered lodestone. Apparently they ordered 15 vials of that. Now see what you can make of these.”

Frederico handed several of the clerk’s messages to the alchemist, along with the key explaining the
letters used for each potion and ingredient. The alchemist studied them for some time, then said, “I think I
know how they make their love potions, but we’ll need more reports to figure out any of the others.”

Your team is to write a program that processes the clerk’s reports and determines the potion formulas
that can be derived from those reports.

Input consists of several independent data sets. Each data set is terminated by an empty line. The final
data set is followed by the end-of-file.

Each data set consists of one to thirty reports. Each report is written on a single line and consists of two
or more pairs. Each pair consists of a single letter denoting a potion or ingredient followed by a quantity as
an integer in the range 1 to 200. Letters and integer values are separated from each other by single spaces.
Each report will contain at least one potion and one ingredient. Each input set will be free of contradictions
and can be resolved without requiring negative numbers in the solution.

Your program is to produce a brief report for each data set. The report is to contain one line for each
potion mentioned in the data set, with the potions listed in alphabetical order. If the formula for the potion
is known, print the number of doses the formula produces, followed by a single space, the potion letter, and
a colon. The potion ingredients are to follow in alphabetical order. For each ingredient, print a single space,
the units of the ingredient needed, another space, and the letter of the ingredient. All results are to be
expressed as reduced integer values—the entire set of integers appearing on one output line should not have
a common divisor greater than one. Do not list ingredients for which zero units are required.

Should it not be possible to determine the formula for any potion listed in the data set, print that potion
followed by a colon, a space, and the word “indeterminate”.

No leading or trailing space is to appear on an output line.

The printed output for each data set (including the last) is to end with an empty line.

== Q>

N QI w

36 a 6

O WL o
[seve iR velve)
NN
Q Qe Q
W N O
Q0 Qo
O P> NN

A: 1 a

A: 4 alc
indeterminate
indeterminate

Q: 5alc1i1d

PPN P

Problem 1
Reverse Engineering Alchemy (continued)

Sample Input

19 c¢c3d3z1

Output for the Sample Input

2009/2010 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 2
Serpentine Belt

A serpentine belt system connects a series of pulleys with a single belt rather than connecting pulley
pairs with many belts. There are many advantages to such a system such as lighter weight and simplified
maintenance. See figure 1 for an example.

Your team is to write a program that will calculate the length of a serpentine belt given the (x,y)
locations of the centers of the pulleys and their radii.

The input is a series of lines terminated by end-of-file. Each line represents one pulley and the line order
is the order in which the belt connects them. The belt from the last pulley connects back to the first. The
first pulley is the drive pulley and hence determines the overall direction of the belt.

Each line consists of three integers separated by whitespace. The first is the x position of the center
of the pulley, the second is the y position. The third is the radius of the pulley. If the radius is > 0 then
the pulley is on the inside of the belt. If < 0, it is outside. All positions and dimensions are in millimeters:
0 <2 < 1000; 0 < y < 1000; |radius| > 0.

There will be no pathologies in the input: the belt will not self intersect; the belt will connect with each
pulley only once and with a wrap angle > 0; the pulleys will not intersect. There will be at least 3 pulleys
but fewer than 50.

Your program is to print one line containing the length of the belt to the nearest millimeter, starting in
the first column and without trailing whitespace.

The following belt equations may prove useful:
For an open belt pair of pulleys (see figure 2):
R1 > R2
6 = arcsin((R1 — R2)/C)
L =+/C? — (Rl — R2)2

For a crossed belt pair of pulleys (see figure 3):

6 = arcsin((R1 + R2)/C)
L =+/C?— (R1+ R2)?

Sample Input

100 100 60
150 250 -10
50 350 50

350 350 60
520 300 30
450 200 -50
500 100 20
300 150 -40

Problem 2
Serpentine Belt (continued)

Output for the Sample Input

1988
¥ T — — e S
:' | |
II'\._ g -ﬁ.\\
i _/J'
red . —
- ’ >
i A o
- | --
i / v 2]
| e il & Y
II“\ ’/I.I/ =
Figure 1. Diagram of the Sample Input.
¥
L7 0
| / .
it s
L% |
Lom ") Open
o - |
| I
Ok 7 helt
T i
. c

Figure 2. Open belt pair of pulleys.

Problem 2
Serpentine Belt (still continued)

" w) Crossed

Figure 3. Crossed belt pair of pulleys.

2009/2010 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 3
Bumper Boat Autopilot

This is an interactive problem.

Many amusement parks have motorized bumper boats with simple controls: usually a throttle that is
either on or off, and a steering mechanism. Despite these common controls, there is considerable variation in
their behavior. Some bumper boats have propellers in the back, others might have a front-mounted nozzle
that points backwards. Steering mechanisms may be rudders in the back or a steering wheel integrated with
the motor. You are to write a program that learns how to steer a bumper boat of unknown configuration,
then guide it to a series of coordinates (known as waypoints) within a time limit. Before being expected to
steer a bumper boat, your program will be able to train itself in trial runs. After completing your trial runs,
you will then be given a list of waypoints and a time limit.

Your bumper boat floats on an infinite lake. Whenever you start a run (trial or judged course), the boat
begins at coordinate (0,0) facing north, with the steering mechanism “centered” at zero degrees. The boat
starts with zero translational and zero rotational velocity. During the trial runs and the actual test course,
your program will issue control commands to the server; each command corresponds to one tenth (0.1) of a
second of simulated time.

You begin a run with the server by issuing a C command to query the configuration of the boat. The
server responds with a line containing a single integer, d, indicating the range of positions [—d, d] in degrees
that the steering mechanism can be turned.

After querying the configuration, you issue a T (trial) or J (judge) command. The server responds with
a line reporting the time remaining, in seconds. The J command will respond additionally with a set of
waypoints in the form

w

Wz 1, Wyl

Wz2, Wy2

szv wyW

where W is the number of waypoints and w;n,wyn form an x,y coordinate for each waypoint. W will never
exceed 20. You then issue control commands of the form:

E,<steering position>
or

I
where E indicates that the throttle is engaged, and the steering position as degrees (floating point) from the
centered steering position (clockwise is positive, counterclockwise is negative). I indicates idle (throttle not
engaged). When idle the steering mechanism has no effect.

In trial mode (T command), the server responds to E or I with a line of the form
xyh

whereas in judge mode, the server responds with a line of the form
xy h w;

where x, y, and h report the position and orientation of the boat 0.1 second after the issuance of the command.
x and y are the current (z, y) coordinates, in meters, of the center of the boat, and h is the heading, in degrees,
of the front of the boat. 0 degrees is north. Negative headings measure degrees counterclockwise from north,
and positive headings measure degrees clockwise from north. South is reported as positive 180 degrees.

Problem 3
Bumper Boat Autopilot (continued)

Note that a boat may not be moving in the direction it is facing. w; is the highest waypoint number
encountered thus far. When w; = 0, it indicates no waypoints have been passed yet. It is possible to pass
multiple waypoints in a single 0.1 second interval. If the multiple waypoints are consecutive and are the next
successive waypoints, then they will be considered in order, even if the exact boat path passes them out of
order.

To start a new trial run, issue a T command rather than a control command. The time remaining
returned from each successive T command counts down cumulatively from a maximum allotted trial time.
To start a judged run, issue a J command rather than a T or control command. The time limit returned
by the J command is distinct from the trial time, and is based upon the boat and the geometry of the
waypoints. As soon as your program issues a J command, it can no longer issue a T command. Finally,
when your program is finished with its judged run, issue a Q command.

To follow the waypoints, your boat must come within 0.5 meters of each waypoint, in the order they
are given. It is okay to wander to other waypoints out of order, just so long as any sequential subset of
the waypoints followed satisfies the specified list. For example, if you are directed to follow waypoints w;
through wig, the following sequence of waypoints satisfies the requirement:

w3, Ws, W1, W2, Ws, W3, We, We, W4, Ws, W10, We, W7, W, W9, W1, W10

Your program will not know the control configuration of the bumper boat, but any one conversation
with the server will always be with only one boat. Your program will be executed several times, each time
against a different boat and/or a different set of waypoints. A typical execution should consist of many trials
(limited by the maximum allotted trial time), followed by a judged attempt.

The waypoints are positioned well within the capabilities of the boat configuration, and an adequate
client implementation will not require fancy loops or maneuvers to negotiate tricky turns. You might find
it useful to structure your training runs to (1) move in a straight line and determine the maximum speed,
(2) turn left or right, (3) transition from straight motion to turn, and determine minimum turn radius at
maximum speed, and (4) transition from a turn to straight motion.

You have access to the same server process that the judges use. Use the getdata command to retrieve
three sample configuration files, outboard.cfg, speedboat.cfg, and puller.cfg. See Hints for Testing to use
these files.

Judged Responses

An ill-formed command produces a PRESENTATION ERROR. E command steering positions outside
the closed interval [—d, d] result in PRESENTATION ERROR. Failing to pass all waypoints in order before
issuing a Q command, running out of trial time, or running out of judged time before passing all waypoints
all result in WRONG ANSWER. Spurious dialog after issuing a Q command produces PRESENTATION
ERROR. Finally, if the server has to wait longer than one second (real time) for your client to issue a
command, the judged response is TIME LIMIT EXCEEDED. Note that this TIME LIMIT EXCEEDED is
the exact same message issued if your program accumulates more than the allotted CPU seconds.

It is very important that your program flush standard output after issuing a command to the server.
e.g.
C fputs("C\n",stdout); fflush(stdout);
C++ cout << "C\n" << flush;
Java System.out.println("C"); System.out.flush();

Problem 3
Bumper Boat Autopilot (still continued)

Sample Transcript

The following is a sample transcript of a client and server conversation. The client commands appear
offset from server responses for clarity. The transcript file (see Hints for Testing) uses four tab characters to
offset client commands from server responses. The italicized commentary to the right of the transcript does
not occur in a client-server conversation. Additionally, it would be impossible to produce meaningful trial
sessions (T commands) that would fit on a single-page sample transcript; the sample session demonstrates
the nature of the conversation.

C client request for the steering limits
45 o +/- 45 degrees
T start a trial run
1000.0 ... 1000 simulated seconds for training trials
E,O Engage throttle with centered steering
0.000000 0.001250 -0.000000
I coast
0.000000 0.002500 -0.000000
E,25.5 throttle with steering 25.5 degrees right of center
0.000000 0.003628 -0.061666
T
999.7
E,-45
0.000000 0.000884 0.101286
J start a judged Tun
100.0 ... only 100 simulated seconds for judging
2 two waypoints follow
0,0.001
0,0.503
E,O
0.000000 0.001250 -0.000000 1
E,O
0.000000 0.003749 -0.000000 2 last waypoint encountered
Q signal quit to the server

Hints for Testing

You may act as the server to a client program to test bumper boat behavior that configuration files might
not produce. Execute your client program with you, the programmer, acting as the server. Let standard
input come from your command line environment. Supply correct responses to your program.

The server process used by the judges is available to the contestants. You are encouraged to use the
sample configuration files to develop your program. You may use the server in two ways. In the absence of
a working client program, you, the programmer, can act as the client, typing input to the server. Use the
following command:

test3 configurationFile transcriptFile
To test your program and its conversation with the server, use the command:

test3 configurationFile transcriptFile sourceFile

Problem 3
Bumper Boat Autopilot (still continued)

where

e configurationFile is described below.

e transcriptFile is a file that captures the server’s inputs and outputs for later analysis. The server’s
inputs are your client’s commands. Client commands are offset by four tab characters to distinguish
the client vs. server dialog.

e sourceFile is the file name of the source code to your client. When specified, the test3 script calls the
compile script.

Sitmulation Details and Specifying Your Own Boat and Waypoints

The simulation model is a round boat with a uniform distribution of mass. The propulsion and steering
mechanism are represented as a single force acting on a fixed point within the circle of the boat. The steering
mechanism does not change the position or the quantity of force, only its direction with respect to the center
of the boat.

There are two components of drag. Dynamic drag acts to slow the boat and is proportional to velocity
(translational and rotational). Static drag occurs only when the motor is idle, and acts to stop the boat
when the velocity falls below a threshold value.

The boat travels in a straight line between two consecutive 0.1 second time points.
You create a boat configuration with a configuration file of the form:

cumulative time allotment, in seconds, for trial runs

time allotment, in seconds, for the judged runs

mass, in kilograms, of the boat

radius, in meters, of the boat

x coordinate of the propulsion force, with respect to the center of the boat at 0,0
y coordinate of the propulsion force, with respect to the center of the boat at 0,0
the propulsion force, in Newtons

the range of steering deflection, [—d, d] in degrees

the skew coefficient of steering inputs

the scale coefficient of steering inputs

Wg1,Wy1 Waypoint definitions

Wg2, Wy2

~
S8 e v s3T5

Wy W , WyWw

Problem 3
Bumper Boat Autopilot (still continued)

For example, a two-meter-diameter boat with a rear-mounted outboard motor steered by a rudder might
have a configuration of

1000 1000 simulation seconds total for training

100 100 simulation seconds for the judged run

200 200 kg

1.0 2 m diameter = 1 m radius

0.0 propeller at

-1.0 back of boat

25 25 N propeller force

45 the rudder can be swung from -45 to 45 degrees
0.0 the force is in the direction

1.0 the rudder handle points
0.0,0.001

0.0,0.503

This might be considered an “inverting control” because moving the rudder to the left steers the boat to the
right.

You should choose masses and forces of about equal values to avoid under-powered or unstable config-
urations.

2009/2010 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 4
Character Checker

The judges for the Programming Contest always carefully check their sample and judged input. However
this can be tedious for large files so they would like your team to write a program that will report on the
characters in an input file.

The characters are to be split into the following classes based on their eight-bit values:

non-space control:
0x00 through 0x1F that are not also whitespace
0x7F delete

whitespace:
0x20 space
0x09 tab
0x0A newline
0x0B vertical tab
0x0C formfeed
0x0D carriage return

non-space printable:
0x21 through 0x7E

non-ascii:

0x80 through OxFF
Input to your program will be a file of eight-bit bytes.

Your program is to print the number of characters in the file by printing a line containing the string
“total:”, a single space, followed by the count with no leading zeroes. If the count is non-zero print a detail
report on the characters seen in the file.

In the detail report represent an eight-bit character by a two-place hexadecimal value, using capital
letters for the values A1 through Fig with a leading zero if necessary. For example, the character “n” would
be 6E.

Report the last character seen before the end of the file by printing “last:”, a single space, and the hex
representation of the character.

Next, report the count of characters in each class, in the order: non-space control, whitespace, non-space
printable, and non-ascii. Print the class name, a colon, a single space, and the count without leading zeroes.

If the whitespace count is non-zero report the whitespace characters seen immediately after the white-
space report line. For each whitespace character that appears at least once in the file print two spaces, the
hex representation of the character, a single space, and the count without leading zeroes. Print one line per
character, in character numerical order.

No trailing whitespace is to appear on an output line.

Problem 4
Character Checker (continued)

Sample Input

this is a sample

Output for the Sample Input

total: 17
last: OA
non-space control: 0O
whitespace: 4

O0A 1

20 3
non-space printable: 13
non-ascii: O

2009/2010 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 5
Parlay Wagering

Parlay wagering offers sports bettors the opportunity to win a large sum of money from a small initial
wager. A parlay wager is a combination of individual independent wagers that only pays if no individual
wager loses. The total returned from each wager is applied or “parlayed” to the next wager in turn. If any
individual wager loses, the bettor receives nothing. If any individual wager is a tie or “push”, the amount
wagered is returned—meaning that individual wager is effectively ignored. The ultimate payout is therefore
reduced.

The sports book quotes the payout rate for an individual wager as a “money line”—a non-zero integer
in the range —2000 to 2000. To compute the payout for a successful wager, the money line is converted to
a decimal multiplier as follows: if the money line is positive, it is divided by 100 to obtain the multiplier.
If the money line is negative, the absolute value is divided into 100 to obtain the multiplier. The multiplier
is always truncated to three digits after the decimal point. The wager is multiplied by this multiplier to
determine the amount won. The amount won is truncated to the cent (the sports book keeps the fractional
cents). The winnings are added to the wager amount and that total is parlayed as the next wager.

Consider the following example for a five-way parlay wager:

Money Line Wager Result Multiplier Amount Won
—170 $10.00 Win 100/170 $5.88
—160 $15.88 Win 100/160 $9.92
125 $25.80 Win 125/100 $32.25
—135 $58.05 Win 100/135 $42.95
—140 $101.00 Win 100/140 $72.11
Subtotal $163.11
Original Wager $10.00
Total Returned $173.11

The maximum total returned for any parlay wager is $1 million. If the calculated total exceeds that
amount, the actual total returned will be $1 million.

Your team is to write a program that will calculate the total amount returned for a series of parlay
wagers. The first line of input to your program will contain the total number of parlay wagers as a single
integer starting in the first column. Each wager that follows will be represented by a series of lines. The first
line of each parlay wager contains the initial bet and the count of individual wagers as integers separated
from each other by a single space. The following lines represent the individual wagers, one per line. Each
individual wager is given as its money line followed by a single space and the result of the wager (“Win”,
“Tie”, or “Loss”).

For each parlay wager, your program is to print the total amount returned in dollars and cents on a
single line starting in the first column without embedded or trailing whitespace. Print the leading dollar
sign and insert commas at the millions and thousands positions as needed.

3

10 8
-170 Win
-160 Win
125 Win
-135 Win
-140 Win
110 Win
120 Win
130 Win
15 5

100 Win
-100 Tie
-250 Win
135 Tie
265 Tie
10 2

100 Loss
300 Tie

$1,839.44
$42.00
$0.00

Problem 5
Parlay Wagering (continued)

Sample Input

Output for the Sample Input

2009/2010 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 6
Endless Plains Capital

The capital city of the (nearly) Endless Plains is laid out as a dense rectangular grid with streets that
run along each block, north/south and east/west. Each street runs the entire length or width of the city—
there are no dead ends. Outside of the city, however, the Endless Plains are flat and unobstructed; one can
travel in any direction he or she pleases.

Navigating and determining distances within the capital city is quite easy. The distance from one
block to the next is considered one unit. One can only travel on the streets, so the distance between two
intersections is simply the east/west difference added to the north/south difference.

However, sometimes residents need to travel outside of the city to other points on the Endless Plains.
While the grid is logically extended outside of the capital city, there are no streets limiting the direction of
travel. Residents of the Endless Plains are not sure what the shortest distance is between any two points.
Your team is to help by writing a program that, given any two integer-coordinate points on the Endless
Plains, will calculate the shortest distance between them.

Input to your program will be a series of capital city scenarios. Each scenario will be represented as a
series of lines. The first line contains two (z,y) pairs, representing the southwest and northeast corners of
the capital city rectangle. These integer coordinates will begin in the first column and be separated from
each other by a single space. The remaining lines in the scenario will be pairs of points, again expressed as
two (z,y) pairs. The integer point coordinates will again begin in the first column and be separated from
each other by single spaces. The list of point pairs will continue until an empty line appears to end the
scenario. The final scenario will be followed by the end-of-file.

For each point pair, your program is to print a line containing the shortest Endless Plains distance
between them. The value should be printed to three decimal places starting in the first column. No trailing
whitespace is to appear on a line. Print an empty line at the end of each scenario (including the last).

Coordinates will always be integers in the range —1000 to 1000. The capital city corners will always be
distinct, and the = and y coordinates of the northeast corner will always be greater than the corresponding
coordinates of the southwest corner. All point pairs will also be distinct.

Sample Input

4 2 10 11
12989
6 14 9 17

Problem 6
Endless Plains Capital (continued)

Output for the Sample Input

(9,17)

(6,14)

(10,11)

(8.9) (12,9)

6.4

4.2)
(14,1)

4

Figure 1. Diagram of the first Sample Input scenario.

2009/2010 SOUTHERN CALIFORNIA REGIONAL
ACM INTERNATIONAL COLLEGIATE PROGRAMMING CONTEST

Problem 7
Disaster Recovery Plans

ForwardProgess.com is a huge future studies think tank. An exhaustive internal study indicates that the
company is weak in disaster preparedness. A deep backlog of externally funded studies prevents the firm from
allocating internal resources to prepare a Disaster Recovery Plan (DRP). As a result, ForwardProgess.com
has contracted your team to publish a DRP and give a single-sided hard-copy to each employee in the
corporation. Single-sided print publishing is expensive, but necessary because the computers might be down
or the pages might get wet and bleed through during a disaster. Your plan must minimize the number of
printed pages.

Within the company, each supervisor has been tasked to prepare a list of possible disasters, such as fire,
earthquake, flood, or Jolt Cola shortage, and the appropriate responses that will ensure business continuity.
For each event, the supervisor determines unique actions that individual employees should perform, and the
order in which these actions must be performed. The actions must be ordered to ensure a proper reaction
to the given event. Some actions require tests for completion and repeated actions. The person executing
the steps in the plan is expected to determine when a cycle in the plan is complete.

There is one quirky rule that your team must implement in the DRP: true to its company name, the
culture of ForwardProgess.com mandates that one may only turn pages forward in the plan, not backward.

Your program must read the set of actions for a given event and determine the minimum number of
pages that produces a properly ordered set of actions, subject to the condition that one may never leaf
backwards through the plan.

Input to your program will be a series of DRPs. Each DRP will be represented as a series of input
lines ending with an empty line. The first line of the DRP is the name of the disastrous event: up to 60
characters starting in the first column. The second line contains 7', the maximum number of tasks per
page, and N, the total number of unique tasks. These values will appear starting in the first column and
be separated from each other by a single space. The remaining input lines contain DRP task dependency
pairs. The DRP tasks are represented by integer values 1 through N. Each dependency pair represents a
predecessor-successor relationship: the successor task cannot begin until the predecessor task has completed.
The dependency pairs are given as integer pairs separated by a comma. For example, the pair “2,5” means
that task 5 cannot begin until task 2 has completed.

For each DRP in the input, your program is to print a single line containing the name of the disaster,
followed by a colon, a single space, and the integer count of the minimum number of pages needed to print
the plan. If the plan cannot be printed using the specified page size, print the string “not printable” in place
of the minimum page count. No leading or trailing whitespace is to appear on an output line.

There will be no more than ten tasks per page and no more than forty tasks in any plan.

Problem 7
Disaster Recovery Plans (continued)

Sample Input

Jolt Cola Shortage
4 8

v e e e e

-

“ v v e .

-

0 0 P T W NOONONON -
NP OO NWHPAOONWOo O 01N

Pizza Strike
2 4

1,
2,
3

>

= oW N

Output for the Sample Input

Jolt Cola Shortage: 3
Pizza Strike: not printable

