

acm International Collegiate Programming Contest

ERIA event sponso

Project Panoptes

Project Panoptes (projectpanoptes.org) will attempt to use low-cost robotic telescopes to collect data, in order to find exoplanets (planets outside of our solar system). For this program you will implement a simple version of software to detect exoplanets from readings from these telescopes.

The telescope will take daily readings of the brightness of a star. If the brightness of the star decreases, a planet may be passing in front of it. If the brightness decreases following a regular pattern, it is a candidate for having an exoplanet.

Day	Brightness	Day	Brightness	Day	Brightness
1	20.6	6	22.2	11	10.8
2	21.0	7	4.8	12	22.9
3	23.2	8	25.9	13	30.4
4	12.0	9	13.0	14	8.6
5	17.5	10	12.2	15	24.9

For example, consider the daily readings of a star's brightness below:

The average of these readings is **18**. If a reading is less than **80%** of the average of all readings, it is considered to have decreased, so readings below **14.4** are considered to be potential planet sightings (and are highlighted here). The readings at days **4**, **9**, and **14** happen every fifth day (and thus has a period of **5**) and may be because of an exoplanet. Similarly, the readings for day **7** and **14** may indicate an exoplanet. Days **4**, **7**, and **10** do not form a pattern because it would also have to include day **1** and day **13**. Only integer length periods should be considered.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. The first line of input contains two integers, n ($2 \le n \le 1,000$) and p ($1 \le p \le n-1$), where n is the number of observations, and p is the minimum period length to consider. Each of the next n lines will contain a floating point number x ($0.0 \le x \le 100.0$), which is the brightness for that day. The days will be in order.

Output

Output a single integer, indicating the smallest possible period of an exoplanet (must be $\geq p$), or -1 of there is none.

Sample Input	Sample Output
15 2	5
20.6	
21.0	
23.2	
12.0	
17.5	
22.2	
4.8	
25.9	
13.0	
12.2	
10.8	
22.9	
30.4	
8.6	
24.9	