

2015 ACM ICPC

Southeast USA Regional

Programming Contest

Division 1
Airports ... 1

Checkers.. 3

Coverage ... 5

Gears ... 6

Grid.. 8

Hilbert Sort ... 9

The Magical 3.. 12

Racing Gems ... 13

Simplicity .. 15

Weightlifting ... 16

Hosted by:

College of Charleston

Florida Institute of Technology

Georgia Institute of Technology

University of West Florida

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 1 of 16 14 November, 2015

Airports

An airline company offers flights out of n airports. The flight time between any given
pair of airports is known, but may differ on direction due to things like wind or
geography. Upon landing at a given airport, a plane must be inspected before it can be
flown again. This inspection time is dependent on the airport at which the inspection is

taking place.

Given a set of m flights that the airline company must realize, determine the minimum

number of planes that the company needs to purchase. The airline may add
unscheduled flights to move the airplanes around if that would reduce the total number

of planes needed.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two integers n and m

(2≤n,m≤500). The next line contains n space-separated nonnegative integers less than
or equal to 106, where the ith integer denotes the amount of time (in minutes) that an

inspection takes at airport i.

Each of the next n lines contains n space-separated nonnegative integers less than or
equal to 106. On the ith line, The jth integer indicates the amount of time it takes to fly

from airport i to airport j. It takes no time to fly from an airport to itself. Note that the
flight time from airport i to j is not necessarily the same as the flight time from airport j

to i.

The next m lines contain three space-separated integers, s, f, and t, (1≤s,f≤n, s≠f,
1≤t≤106) indicating that a flight must start at airport s, end at airport f, and fly out from
airport s at exactly time t heading directly to airport f.

Output

Output a single positive integer indicating the minimum number of planes the airline

company must purchase in order to realize the m requested flights.

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 2 of 16 14 November, 2015

Sample Input Sample Output

2 2

1 1

0 1

1 0

1 2 1

2 1 1

2

2 2

1 1

0 1

1 0

1 2 1

2 1 3

1

5 5

72 54 71 94 23

0 443 912 226 714

18 0 776 347 810

707 60 0 48 923

933 373 881 0 329

39 511 151 364 0

4 2 174

2 1 583

4 3 151

1 4 841

4 3 993

3

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 3 of 16 14 November, 2015

Checkers

Checkers is played on a square nxn grid (typically n equals 8, 10, or 12, but for this
problem, n will range from 2 up to 26). The board has squares colored red and black,

and all pieces move only on the black squares. Red and Black squares alternate, so that
no two squares that share a side are ever of the same color. The two players are called

Black and White, and their pieces are so colored. There are two kinds of pieces,
Checkers and Kings, but for this problem, we will only be concerned with Kings. Kings

may jump a piece of the other color in one diagonal hop, capturing the piece (removing
it from the board). If such a capture is possible, the jumping piece may continue

jumping and capturing pieces of the other color until no more jumps are possible. A King
may jump in any of the four diagonal directions.

In order to perform a jump, the piece jumped must be immediately adjacent
(diagonally) to the piece jumping, and the square on the other side of the jumped piece
must be vacant.

In this problem, it is Black's turn to move. Given a position of checkers, you must
determine if it is possible for a Black King to jump all of White's Kings in a single move,

and if so, how many Black Kings are able to do so.

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 4 of 16 14 November, 2015

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains an integer n (2≤n≤26), the size

of the board. The following n lines describe the board. Each line will contain exactly n
characters, and each character will be one of ‘.’, ‘_’, ‘B’, or ‘W’, indicating the contents
of that square, as follows:

. Indicates a Red square. No Kings may be placed on a Red square.

_ indicates a Black square that is unoccupied.

B indicates a Black square with a Black King.

W indicates a Black square with a White King.

You may assume that the given board is well-formed; that is, Black and Red squares will
alternate through every row and every column, and no Kings will be on any Red square.

Output

Output a single integer indicating the number of Black Kings that can capture all of the

White Kings in a single move.

Sample Input Sample Output

8

._._._._

.._._.

.W._.B._

.W.W..

.W.B._._

.._._.

.W._.W._

.._._.

0

10

._._._._._

.W.W.._.

._._._._._

.W.W.._.

._._._._._

_.W.W.W.W.

._._._._._

_.W.W.W.W.

.B.B.B._._

.._._._.

1

(Note: It’s the middle B that can jump all of the Ws).

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 5 of 16 14 November, 2015

Coverage

A cellular provider has installed n towers to support their network. Each tower provides
coverage in a 1km radius, and no two towers are closer than 1km to each other. The
coverage region of this network is therefore the set of all points that are no more than
1km away from at least one tower. The provider wants as much of this region as
possible to be connected, in the sense that a user at any point within a connected
subregion can travel to any other point within the connected subregion without having
to exit the subregion. Their current installation of towers may or may not already form
a single connected region, but they have the resources to build one more tower

wherever they want, including within 1km of an existing tower. Given that the provider
is able to build one more tower, what is the maximum number of towers (including the

new one) that can be included within a single connected subregion of coverage?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input consists of a single integer n (1≤n≤5,000)
denoting the number of existing towers. Next follow n lines, each with 2 space-

separated floating-point numbers x and y (0≤x,y≤100,000), denoting the location of a
tower in km. It will be guaranteed that the optimal number of towers will not change
even if the coverage radius of all the towers is increased or decreased by 10-6 km.

Output

Ouput a single integer, denoting the maximum number of towers that can be within a
single connected subregion of the network after installing one additional tower.

Sample Input Sample Output

5

1.0 1.0

3.1 1.0

1.0 3.1

3.1 3.1

4.2 3.1

6

5

1.0 1.0

3.1 1.0

1.0 3.1

3.1 3.1

10.0 10.0

5

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 6 of 16 14 November, 2015

Gears

A set of gears is installed on the plane. You are given the center coordinate and radius of
each gear, which are all integer-valued. For a given source and target gear, indicate
what happens to the target gear if you attempt to turn the source gear. Possibilities are:

 The source gear cannot move, because it would drive some gear in the

arrangement to turn in both directions.

 The source gear can move, but it is not connected to the target gear.

 The source gear turns the target gear, at a certain ratio

If the source gear cannot move, give this result, even if the source and target gears are
not connected.

Input

Each input will consist of a single test case. Note that your program may be run multiple

times on different inputs. The first line of input contains a single integer n (1≤n≤1,000),
the total number of gears. Following this will be n lines, one per gear, containing the x, y

(-10,000≤x,y≤10,000) and r (1≤r≤10,000) values for the gear, where (x,y) is the position
of the axle of the gear, and r is its radius. Assume that the teeth of the gears are
properly designed, and accounted for in the radius, so that any gear will mesh with any

other gear if (and only if) they are tangent to each other. The gears will never overlap.

Output

Output a single line, with the following content, based on the result:

 -1 if the source gear cannot move.

 0 if the source gear can move but is not connected to the target.

 a b if the source gear moves the target gear, where a and b are two space-
separated integers, and a:b is the ratio of source gear revolutions to target gear

revolutions reduced to its lowest form (i.e. they have no common factor other
than 1).

o a is always positive.

o If the target turns in the same direction as the source, b is positive.

o If the target turns in the opposite direction as the source, b is negative.

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 7 of 16 14 November, 2015

Sample Input Sample Output

2

0 0 100

0 300 200

2 -1

2

0 0 100

0 300 100

0

16

10 10 5

20 10 5

30 10 5

40 10 5

10 20 5

20 20 5

30 20 5

40 20 5

10 30 5

20 30 5

30 30 5

40 30 5

10 40 5

20 40 5

30 40 5

40 40 5

1 1

3

0 0 1

0 3 2

4 0 3

-1

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 8 of 16 14 November, 2015

Grid

You are on an nxm grid where each square on the grid has a digit on it. From a given
square that has digit k on it, a Move consists of jumping exactly k squares in one of the
four cardinal directions. A move cannot go beyond the edges of the grid; it does not
wrap. What is the minimum number of moves required to get from the top-left corner
to the bottom-right corner?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two space-separated integers n
and m (1≤n,m≤500), indicating the size of the grid. It is guaranteed that at least one of n
and m is greater than 1.

The next n lines will each consist of m digits, with no spaces, indicating the nxm grid.
Each digit is between 0 and 9, inclusive.

The top-left corner of the grid will be the square corresponding to the first character in
the first line of the test case. The bottom-right corner of the grid will be the square

corresponding to the last character in the last line of the test case.

Output

Output a single integer on a line by itself representing the minimum number of moves
required to get from the top-left corner of the grid to the bottom-right. If it isn’t
possible, output -1.

Sample Input Sample Output

2 2

11

11

2

2 2

22

22

-1

5 4

2120

1203

3113

1120

1110

6

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 9 of 16 14 November, 2015

Hilbert Sort

Sorting numerical data not only makes it easy to search for a particular item, but also
makes better use of a CPU's cache: any segment of data that's contiguous in memory
will describe a set of items that are similar in some sense. Things get more complicated
if our data represents points on a 2D grid. If points (x,y) are sorted by x, breaking ties by
y, then adjacent points will have similar x coordinates but not necessarily similar y,
potentially making them far apart. To better preserve distances, we can sort the data
along a space-filling curve.

The Hilbert curve starts at the origin (0,0), finishes at (s,0), in the process traversing

every point in axis-aligned square with corners at (0,0) and (s,s). It has the following
recursive construction: split the square into four quadrants meeting at (s/2, s/2).

Number them 1 to 4, starting at the lower left and moving clockwise. Recursively fill
each of them with a suitably rotated and scaled copy of the full Hilbert curve.

Start with a single point at (s/2,s/2). Then, repeat these steps:

 Scale and copy the current construction into each of the 4 quadrants.

 Rotate quadrant 1 by -90 degrees and flip it vertically, so that the start of the
curve is closest to the lower left corner (0,0).

 Rotate quadrant 4 by 90 degrees and flip it vertically, so that the end of the
curve is closest to the lower right corner (s,0).

 Now, connect the end of the curve in quadrant 1 to the start of the curve in
quadrant 2, connect the end of quadrant 2 to the start of quadrant 3, and the

end of quadrant 3 to the start of quadrant 4.

Here are the first two iterations:

1

2 3

4

(0,0)

(s,s)

(0,0)

(s,s)

1

2 3

4

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 10 of 16 14 November, 2015

The Hilbert Curve is built by repeating this construction infinitely many times. The

following diagram shows the first six steps of building the Hilbert Curve:

Given some places of interest inside of a square region, sort them according to when the
Hilbert curve visits them, starting from (0,0). Without going into gory detail about
Fractal theory, note that making s odd guarantees that all integer points are visited just
once, so their visitation order in relation to each other is unambiguous.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The first line of input contains two space-separated integers n
and s (1≤n≤100,000, 1≤s<109, s is odd). The next n lines describe locations of interest by

space-separated integers x and y (0≤x,y≤s). No two locations will share the same
position.

Output

Output the n ordered pairs, one per line, with x and y separated by a space, Hilbert-

sorted according to their positions.

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 11 of 16 14 November, 2015

Sample Input Sample Output

14 25

5 5

5 10

5 20

10 5

10 10

10 15

10 20

15 5

15 10

15 15

15 20

20 5

20 10

20 20

5 5

10 5

10 10

5 10

5 20

10 20

10 15

15 15

15 20

20 20

20 10

15 10

15 5

20 5

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 12 of 16 14 November, 2015

The Magical 3

Three is a magic number.

Yes it is; it’s a magic number.

Somewhere in the ancient, mystic trinity,

You get three as a magic number.

- Schoolhouse Rock

According to Pythagoras and the Pythagorean School, the number 3 - which they called
triad - is the noblest of all digits, as it is the only positive integer to equal the sum of all

of the positive integers below it (1+2=3), and it is the only positive integer whose sum
with those below equals the product of them and itself (1+2+3=1x2x3).

Your task is to find the magic – the magic 3, that is – when it can be the last digit in a
representation of a positive integer in some base. Consider, for example, the number
11. It can be represented as ONE-THREE (13) in base 8 and as TWO-THREE (23) in base 4.
You are to write a program that will find the smallest base for a given positive integer
where the input number’s representation in that base ends in 3. This is possible for all

integers greater than 6.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. Each test case will consist of a single line with a single integer

n (7≤n<231).

Output

For each test case, output a single integer representing the smallest base in which the
input n ends with a 3.

Sample Input Sample Output

11 4

42 13

9876 3291

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 13 of 16 14 November, 2015

Racing Gems

You are playing a racing game. Your character starts at the X-axis line (y=0) and
proceeds up the racetrack, which has a boundary at the line x=0 and x=w. The finish is
at y=h, and the game ends when you reach that line. You proceed at a fixed vertical
velocity v, but you can control your horizontal velocity to be any value between -v/r and
v/r, where r is a fixed ratio. You may change your horizontal velocity at any time, but
your vertical velocity must remain fixed.

There are gems at specific points on the race track. Your job is to collect as many gems
as possible (they all have the same value).

How many gems can you collect? You may start at any horizontal position you want (but
your vertical position must be 0 at the start).

Input

Each input will consist of a single test case. Note that your program may be run multiple

times on different inputs. The first line will contain four integers: n (1≤n≤105) is the
number of gems, r (1≤r≤10) is the ratio of vertical velocity to maximum horizontal

speed, w (1≤w≤109) is the width of the track, and h (1≤h≤109) is the height of the finish
line. Following this will be n lines, each containing an integer x and y coordinate
(0≤x≤w,1≤y≤h), containing the coordinate of a gem. All gems will lie on the race track.

None will be on the start line.

Output

Output a single integer on a line by itself representing the maximum number of gems
that you can collect.

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 14 of 16 14 November, 2015

Sample Input Sample Output

5 1 10 10

8 8

5 1

4 6

4 7

7 9

3

5 1 100 100

27 75

79 77

40 93

62 41

52 45

3

10 3 30 30

14 9

2 20

3 23

15 19

13 5

17 24

6 16

21 5

14 10

3 6

4

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 15 of 16 14 November, 2015

Simplicity

For a string of letters, define the Simplicity of the string to be the number of distinct
letters in the string. For example, the string string has simplicity 6, and the string letter

has simplicity 4.

You like strings which have simplicity either 1 or 2. Your friend has given you a string and

you want to turn it into a string that you like. You have a magic eraser which will delete
one letter from any string. Compute the minimum number of letters you must erase in

order to turn the string into a string with simplicity at most 2.

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The input will consist of a line with a single string consisting of

at least 1 and at most 100 lowercase letters.

Output

Output a single integer, indicating the minimum number letters you need to erase in
order to give the string a simplicity of 1 or 2.

Sample Input Sample Output

string 4

letter 2

aaaaaa 0

uncopyrightable 13

ambidextrously 12

assesses 1

assassins 2

2015 ACM ICPC Southeast USA Regional Programming Contest

 Page 16 of 16 14 November, 2015

Weightlifting

In competitive weightlifting, you must perform a sequence of lifts. You have a constant
strength s, and a decreasing energy reserve e. For each lift, you may choose any positive
(not necessarily integer) weight w to attempt. If s≥w, the lift succeeds and your energy
goes down by esuccess; if s<w, the lift fails and your energy goes down by efailure. You may
continue attempting lifts as long as e>0. If at any point e≤0, you can make no further
attempts. Your score is the maximum weight you successfully lift or 0 if every attempt
failed.

Ideally, you should lift exactly at your strength limit. However, you do not know your

strength s. You only know that you can definitely lift the empty bar (25kg), and that the
maximum conceivable lift is (225kg). How close to an optimal score can you guarantee?

That is, what's the smallest d for which you can ensure a score of at least s-d?

For example, suppose e=4, esuccess=1 and efailure=2. You try to lift 200kg and fail. Now,
e=2. You try 100kg and succeed. Now, e=1. You try 150kg and succeed. Now, e=0 and
you must stop. You know that you can lift 150kg, but you cannot lift 200kg. Your
strength s must be somewhere between 150kg and 200kg. You scored 150, your optimal

score might be as high as (just under) 200. You still don’t know s, but you know you’re
within 50. In this case, d=50.

That’s a specific example, and the strategy used is certainly not optimal. You can do
better. What’s the smallest value of d you can get so that you can guarantee a score of
at least s-d for any and all possible values of s?

Input

Each input will consist of a single test case. Note that your program may be run multiple
times on different inputs. The input consists of a single line with 3 space-separated
integers e, esuccess, efailure (1≤e,esuccess,efailure≤107), where e is your beginning energy
reserve, esuccess is the amount of energy expended in a successful lift, and efailure is the
amount of energy expended in a failed lift.

Output

Output a single line with a real number d, rounded to exactly 6 decimal places, which is
the minimum weight in kg such that you can ensure a score of at least s-d.

Sample Input Sample Output

1 3 3 112.500000

12 3 3 13.333333

3000 2 3 0.000000

