
David Van Brackle

Chief Judge, Southeast USA Region, ICPC

 Division 1 (2 correct/30 submissions)
 Given a list of scheduled flights, airports, turn times,

etc., determine the minimum number of planes
needed.

 Suppose you used a different plane for all m flights.
 Then you’d need m planes.

 Supposed you were able to reuse a plane from flight
A for flight B.
 Then you’d need m-1 planes

 Suppose there were 5 such instances
 Then you’d need m-5 planes

 So, to minimize the number of planes, you must
maximize plane reuse.

The problem becomes an optimum pairing

problem, solvable by Max Flow.

Source Sink

ALL

Flights

ALL

Flights

Link flights A and B iff the same plane can be used for A and B, and A≠B.

All edges have capacity=1

If the result of the Max Flow is x, then the final answer is m-x

 Note that the Triangle Inequality does

NOT hold.

 If might be quicker to fly ACB than AB

 You’ve got to do something like Floyd-

Warshall to get all shortest paths

 However, if it’s a scheduled flight, you

must go directly.

 So, you need TWO distance matrices: one for

direct flights, one for shortest distances

 Division 2 (5/28)
 Given a 2D array of 1s and 0s, Blur it by

averaging the 9 pixels around any given
pixels
 Wrap around the edges

 Do this many times
 Output: Number of unique colors needed

 Trick 1: use ‘mod’ to wrap around edges
 Trick 2: Use the sum, not the average!
 This keeps the numbers as integers and avoids

roundoff error

 Division 1 (4/73)
 How many Black Kings can jump all of the

White Kings?

 Set it up as a graph
 Checkerboard squares are nodes

 Jumps are undirected edges

 Build a new graph for each Black King, using DFS
or BFS, and only including possible jumps

 Is there an Euler path?
 An Euler Path uses every edge in the graph

exactly once

 Fleury’s algorithm is very simple (but not terribly
efficient):
 From a node, choose any edge that isn’t a Bridge

 If all edges are Bridge edges, take any one

 Traverse the chosen edge to the other node, and delete
the edge

 Continue until all edges are deleted, or until you’re stuck. If
all edges are deleted, then there is an Euler path

 How do you tell if an edge is a Bridge?
 Do a DFS from the node, and count visited nodes

 Delete the node (temporarily) and do another DFS

 If the two counts are different, then the edge is a Bridge
 This isn’t very efficient, but it’s easy to code, and the

numbers in this problem are small enough that it will
run in time.

What if there are two different edges

representing jumps over the same White

King? Aren’t you in danger of taking a jump

over a King that is no longer there?

If jumps are your only move, then the black

squares are partitioned into 4 groups:
A B

C D

A B A B A B

C D C D C D

A B

C D

A B A B A B

C D C D C D

A B

C D

A B A B A B

C D C D C D

A B

C D

A B A B A B

C D C D C D

A B

C D

A B A B A B

C D C D C D

A B

C D

A B A B A B

C D C D C D

It’s

impossible to

jump from

one group to

another.

So, it’s

impossible

for a Black

King to

jump a

White King

from two

different

angles.

 Division 2 (12/36)
 Sort people by their “class”

 queenelizabeth: upper upper class

 mom: upper upper lower middle class

 Parsing
 Create a “key” based on classes
 In reverse order

 Might not be the same length
▪ Fill in missing with “Middle”

 In the above example:
▪ Let a=upper, b=middle, c=lower

▪ queenelizabeth key might be aabb

▪ mom key might be bcaa

 Division 1 (2/9)
 Given a set of cell towers with 1km ranges,

none within 1km of another, what’s the largest
connected group you can form by adding one
tower?

 Firstly, Connected Components
 Create a graph, with towers as nodes

 Edge between if towers are within 2km

 While you’re at it, remember nodes that are within
4km
▪ We’ll use this later

▪ Both of these lists will be small.

If a 1km circle connects two other 1km

circles…

… Then their centers must me inside a

circle with 2km radius

If a circle contains some points….

… Then

there is

another

circle with

the same

radius,

containing

the same

points

With at

least 2 of

the points

on the

edge of

the circle

Pick pairs of points, form

2 2km circles, and in

turn, count points in

each.

We only

need to

consider

points that

are within

4km of

each other

That’s why we

formed that list

at the beginning

Remember,

because the

towers’

ranges are

non-

intersecting,

That list is very small!

 Division 2 (34/112)
 Given the results of dropping an egg off of a building

at a certain floor (SAFE or BROKEN) determine:
 The highest floor where the egg might be safe

 The lowest floor where the egg might be broken

 We’re guaranteed that it’s safe on floor 1, and that it
will break on floor k

 So, the highest possible safe floor is the lowest
recorded broken floor minus one
 No broken floors? Then it’s k-1

 Likewise, the lowest possible broken floor is the
highest safe floor plus one
 No safe floors? Then it’s 2

 Division 2 (30/75)
 Given a list of an even number of scores,

find the smallest number x where the list
can be organized into pairs, and every
pair’s sum is ≥x

 Sort the numbers. Pair the smallest with
the largest, next-smallest with next-
largest, and so on.

 Take the smallest of all of those pair sums

 Let x be the best. The second best is x-a, a>0.

 Let y be the worst. The second worst is y+b, b>0.

 Here's the order:
x

x-a

y+b

y

 Our answer is min(x+y, (x-a)+(y+b)).

 Suppose we paired them differently: x with y+b, y with x-a

 Then our answer would be min(x+y+b, x+y-a) = x+y-a

 a>0, b>0, so b>-a

 But since a>0 and b>0, x+y-a has to be worse than x+y, and it

also has to be worse than x+y-a+b.

 Any ordering you can come up with can be obtained from the

claimed optimal solution by a series of such swaps, each one

making the answer worse.

 So, the claimed optimal solution is, indeed, optimal.

 Division 1 (23/28)

 Given a set of gears, determine the effect

on a target gear of turning a source gear

 The source gear cannot move

 The source gear is not connected to the target

gear

 The source gear turns the target gear by some

ratio

 Build a graph with gears as nodes, edges between if
they’re connected (i.e. they “touch”)
 (x1-x2)2 + (y1-y2)2 = (radius1 + radius2)2

 Don’t take the square root – keep it in integers!
 Use a graph search to analyze the graph

 Is the source gear connected to the target gear?

 Keep track of Parity (1 or 0).
▪ This corresponds to Clockwise vs CounterClockwise

▪ If two gears are connected, then they must have opposite parity

 If a gear has neighbors with opposite parities, then the
source gear cannot turn.

 If they’re connected. The ratio answer is just the ratio
of their radii
 Intervening gears do not matter!

 Both Divisions (33/74,2/15)

 Given a grid of digits 1-9, each digit

represents the number of squares you can

move, up, down, left or right

 Find the length of the shortest path from

the top-left to the bottom-right

 No wrapping around the edges

 Just Breadth-First Search

 Both Divisions (7/19,0/0)

 Sort points by where they fall on a Hilbert Curve

 Start with a point in the center of a square.

 Duplicate that square in each of 4 quadrants (with some flipping),

and connect them. Repeat.

1

2 3

4

(0,0)

(s,s)

(0,0)

(s,s)

1

2 3

4

Repeat ad infinitum, and the curve fills the whole space.

 The Hilbert Curve is complicated. But, notice that
every point in Q1 comes before any point in Q2, Q2
before Q3, Q3 before Q4
 So order the points by quadrant

 What if 2 points are in the same quadrant?
 It’s a fractal. Just repeat the process in the quadrant… and

so on, and so on.
 Build a ‘key’ to sort on, based on quadrant, quadrant

in quadrant, and so on.
 How deep should you go?

 Well, they’re between 1 and 109, so they’re all less than
230.

 Splitting in half 30 times should be sufficient whatever the
data set.

The translation, flipping and scaling can be

tricky.

public String makekey(double x, double y, double s, int level)

{

 String key = "";

 if(level>0)

 {

 --level;

 double s2 = s/2.0;

 if(x<=s2 && y<=s2) key = "a" + makekey(y, x, s2, level);

 else if(x<=s2 && y>s2) key = "b" + makekey(x, y-s2, s2, level);

 else if(x>s2 && y>s2) key = "c" + makekey(x-s2, y-s2, s2, level);

 else if(x>s2 && y<=s2) key = "d" + makekey(s2-y, s-x, s2, level);

 }

 return key;

}

 Both divisions (21/152,2/101)
 Given a number x, find the smallest base in which

the representation of x ends with a 3

 If x ends with a 3 in base b, then x-3 ends in 0 in
base b, and is thus divisible by b.

 Then, we must find the smallest factor >3 of x-3
(bases 2 and 3 don’t have the digit 3)

 The trick: We can’t just iterate from 4 to x-3. If x-3
is large and prime, then it will take too long.

 Iterate up to 𝐱 − 𝟑
 for(int i=4; i*i<=x-3; i++)

 If you don’t find anything, then x-3 must be a
large prime, or a large prime times 2, or a
large prime times 3.
 So, the answer is the large prime

 This should be fast enough, but to make it

even faster, the answer has to be 4, or 6, or
9, or a prime number. So, limit your search to
4, 6, 9, or primes.

 Division 2 (53/59)

 Multiply a number’s digits, keep going until

the result is <10. How many steps does it

take?

 while(number >= 10) {

 int newnumber = 1;

 while(number>0)

 {

 newnumber *= number%10;

 number /= 10;

 }

 number = newnumber;

 ++count;

}

ps.println(count);

 Division 1 (4/16)

 You move up a grid at a fixed pace, with a

limit to your horizontal speed. There are

gems at points of the grid. How many

gems can you collect?

 A bit of geometry here – but not as much

as you might think.

For the sake of explanation, let r=1. Then,

from any gem, the gems that you could

possibly get next are in this realm:

Transform by: (y-x, y+x). This is

essentially a 45o rotation. Now, that realm

looks like this:

 Just sort by the x coordinate, and find the

longest nondecreasing subsequence of y

coordinates.
 There’s that pesky rate r, but it’s easily

handled in the transform:

 (y-r*x, y+r*x)

 The sort is O(n log n). What about the

longest nondecreasing subsequence?

Can we do that in O(n log n)?

Let a[i] be the smallest element that can end a LNDS of length i.

For example, in this list:
 8 9 12 10 11 1 2 3 7 5 6

a[4]=5

The a[i]’s have to be in sorted order. If a[i]=x, then there is a subsequence

of size i that ends with x, which means that there’s a subsequence of size i-1

of all numbers <x that x is at the end of.

So, let MAX be the longest LNDS found so far. Go through the list in order. For

each new value x, use a Binary Search to find where x should go in the list.

If a[i]≤x<a[i+1], then a[i+1]=x

If a[MAX]≤x, then a[++MAX]=x

At the end, MAX is the length of the LNDS. You go through a list of size n, doing

an O(log n) Binary Search, so the whole algorithm is O(n log n)

 Both Divisions (42/73,39/140)
 Given a string of lower-case letters, what is the

smallest number of individual letters that must
be removed so that the string has no more than
2 kinds of letters?

 Example: ababcabxbaabbacaaa

 Remove 3 (the 2 c’s and the x) and the string
has all a’s and b’s

 Count the number of occurrences of each letter
 The answer is the sum of all but the two largest

char letters[] = sc.next().trim().toCharArray();

int counts[] = new int[26];

Arrays.fill(counts, 0);

for(char letter : letters) ++counts[(int)(letter-'a')];

Arrays.sort(counts);

int sum = 0;

for(int i=0; i<24; i++) sum += counts[i];

ps.println(sum);

 Division 2 (35/59)
 Given the 3 side lengths of 2 triangles, can the 2

triangles be put together to form a rectangle?

 2 things to check:
 Are they the same 3 side lengths (maybe in a different

order)?

 Do they form a right triangle? (use the Pythagorean
theorem: a2 + b2 = c2, where c is the longest side)

Arrays.sort(t1);

Arrays.sort(t2);

boolean ok = (t1[0]*t1[0] + t1[1]*t1[1] == t1[2]*t1[2]);

ok &= (t1[0]==t2[0] && t1[1]==t2[1] && t1[2]==t2[2]);

ps.println(ok ? "1" : "0");

 Division 1 (1/8)

 Given your energy, and the energy

expended in successful and unsuccessful

lifts, how close can you come to your

(unknown) strength?

 Must chop the search space into as many

equally-sized segments as possible

 If esuccess == efailure, then it’s like binary

search

 With 1 lift, you can split the space into 2

 With 2 lifts, if the 1st lift fails, then you can

ignore the upper partition. If the 1st lift

succeeds, you can ignore the lower partition.

So, with 2 lifts you can split the space into 4

partitions.

 With 3 lifts, you can partition the space into 8

 If esuccess != efailure, it’s a bit trickier. But,

we can use a simple Dynamic Programming

approach.

 Let splits[i] be the number of splits you

can get with i energy remaining.
splits[i] = 1 + splits[i-esuccess] + splits[i-efailure]

 Then, the number of partitions is just
 p = splits[e]+1

 Using recursion will run too deep. You

need to iterate through the list.

 The number of splits can overflow pretty

quickly. You need to find a largest feasible

value.

public static final long INFINITY = 10000000000L;

for(int i=1; i<=e; i++)

{

 splits[i] = Math.min(

 (i>=es?splits[i-es]:0) + (i>=ef?splits[i-ef]:0) + 1,

 INFINITY);

}

int partitions = splits[e]+1

 You have two strategies:
 You can use all of your lifts to partition the search space [0,225]

OR

 You can save 1 lift to do 25, and use the remaining to partition
the search space [25,225].

 Which is better?

 Should you lose a lift to guarantee a score of at least 25, or
should you use all of your lifts and risk a score of 0?

 If you’re trying to maximize your score, then saving a lift for 25 is
probably better. But, that’s not what the problem says. The
problem is to minimize your error window.

 You don’t know a priori which one is best, so you have to account
for them both.

Math.min(200.0/(p-1), 225.0/p)

 Division 2 (51/81)

 Given a list of words, reverse them, and

print the reversals in alphabetical order

int n = sc.nextInt();

String words[] = new String[n];

for(int i=0; i<n; i++)

{

 char word[] = sc.next().toCharArray();

 words[i] = "";

 for(char ch : word) words[i] = "" + ch + words[i];

}

Arrays.sort(words);

for(String word : words) ps.println(word);

