Problem E: Approximate Sorting

Problem E: Approximate Sorting

Source: sorting. {c,cpp,java}

In many programming languages, library functions are provided for sorting elements in an
array. In order for these sorting functions to work for different types of elements, the user
supplies a comparison function 1ess (x,y) which returns true if and only if x comes
before y in the sorted order. Of course, the comparison function has to 'make sense'. For
example, for any two different elements x and y, exactly one of less (x,y) and

less (y,x) should be true. For the purpose of this problem, an array is sorted when there
are no inversions with respect to the comparison function. An inversion with respect to
less(x,y) in an array A of size n (indexed from 0) is a pair of integers 0 = i < j <
n such that less (A[j], A[i]) = true (note that this may not be equivalent to
less(A[i], A[]j]) = false).

Unfortunately, some programmers are not very careful in defining the comparison function.
In such cases, there may be no way to sort the elements in an array to satisfy the comparison
function. The best we can do is to produce a permutation minimizing the number of
inversions with respect to the given comparison function.

Input

For each case, an integer n, 1 <n < 18, indicating the size of the array is given on one line.
The elements in the array are labelled 0, 1, 2, ..., n—1. The next n lines each contains a

binary string of length n, with the jth character of the i line indicating the result of the
comparison function less (i, j) (0 means false and 1 means true). The end of input is
indicated by a case in which n = 0. The last case should not be processed.

Output

For each case, output the permutation that has the smallest number of inversions with
respect to the given comparison function. This is followed by a line containing a single
integer indicating the number of inversions in the permutation. If there are multiple
permutations with the same number of inversions, output the one that is lexicographically
smallest.

1of2



Problem E: Approximate Sorting

Sample Input

4

0111
0000
0100
0110

3

011
011
011

6
101010
011010
110110
000000
111010
001010
0

Sample Output

0321

0

012

1
015234
5

20f2



