° -
F! % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

° " icpc.foundation
event
sponsor

000

2019 ICPC North America Qualifier Contest

Problem A
Circuit Math

You are enrolled in the Computer Organization and Architecture course at your university. You decide to write a
program to help check your work by computing the output value of a combinational digital circuit, given its inputs.

A
B

C
D
Figure A.1: An example of a combinational digital circuit. See the text for an explanation.

Consider the circuit shown in Figure A.1, which we use for illustration. This circuit has four inputs (letters A through
D on the left), each of which is either true or false. There are four ‘gates’ each of which is one of three types: AND,
OR, or NOT. Each gate produces either a true or false value, depending on its inputs. The last gate (the OR on the
right) produces the output of the entire circuit. We can write these three types of gates in text by their equivalent
logical operators: » for AND, + for OR, and - for NOT. In what follows, we’ll use the operators rather than gates to
describe circuits.

Here is how these operators work. Given an assignment of true (T) or false (F) for each input, the operators produce
the truth value indicated in the following tables:

A|BJ|ABS*x|AB+
T| T T T Al A -
F|T F T T F
T|F F T F T
F|F F F

Notice that AND and OR take two inputs, whereas NOT operates on only one input. Also, we use postfix notation
to write expressions involving operators (like 2 B), where the operator comes affer its input(s) (just as how in
Figure A.1, each gate in the circuit diagram comes after its inputs).

When we describe a valid circuit in postfix notation, we use the following syntax.
e An uppercase letter (A through Z) is a valid circuit. In other words, an input alone (without any gates) is a valid
circuit (which produces as output its own input value).

e If <C1> and <C2> are valid circuits, then ‘<C1> <C2> =’ is a valid circuit that produces the AND of the
outputs of the two subcircuits.

e If <C1>and <C2> are valid circuits, then ‘<C1> <C2> +’isavalid circuit that produces the OR of the outputs
of the two subcircuits.

ACM-ICPC North America Qualifier 2019 Problem A: Circuit Math 1

° -
F! % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

°® " icpc.foundation

2019 ICPC North America Qualifier Contest
i event
sponsor

e If <C1> isa valid circuit, then ‘<C1> -’ 1is a valid circuit that produces the NOT of <C1>’s output.

00!

No other description is a valid circuit.

Thus, one of the ways the circuit in Figure A.1 could be described using postfix notation is as the string:
AB~xCD+ - +

Given a truth value (T or F) for each of the inputs (2, B, C, and D in this example), their values propagate through the
gates of the circuit, and the truth value produced by the last gate is the output of the circuit. For example, when the
above circuit is given inputs A=T, B=F, C=T, D=F, the output of the circuit is F.

Given an assignment to variables and a circuit description, your software should print the output of the circuit.

Input

The first line of the input consists of a single integer n, satisfying 1 < n < 26, denoting the number of input variables.
Then follows a line with n space-separated characters. Each character is either T or F, with the ith such character
indicating the truth value of the input that is labeled with the <th letter of the alphabet.

The last line of input contains a circuit description, which obeys the syntax described above. Each circuit is valid, uses
only the first n letters of the alphabet as input labels, and contains at least 1 and at most 250 total non-space characters.

Note that while each variable is provided only one truth value, a variable may appear multiple times in the circuit
description and serve as input to more than one gate.

Output

Print a single character, the output of the circuit (either T or F'), when evaluated using the given input values.

Sample Input 1 Sample Output 1
4 F

TFTF

AB«*CD+ - +

ACM-ICPC North America Qualifier 2019 Problem A: Circuit Math 2

° -
FQ % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

° " icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

000

Problem B
Diagonal Cut

Quido and Hugo are making a chocolate cake. The central ingredient of the
cake is a large chocolate bar, lying unwrapped on the kitchen table. The bar
isan M x N rectangular grid of chocolate blocks. All of the M N blocks are
rectangles of identical shape and size. The chocolate bar is of top quality and
the friends want to eat part of it, before the rest is used in the cake.

“OK,” says Quido, “let’s divide the whole bar into two triangular chunks by a
straight diagonal cut from its upper-left corner to its lower-right corner. We will

Photo of a chocolate being cut. Image from Simone_ph at

then eat all of the blocks which have been cut exactly in half, into two equal-area pixabay.com
pieces. You will eat one half and I will eat the other half of each such block. All

other blocks, that is, the blocks which are either uncut or cut into two parts of

different sizes, will go directly into the cake. Of course, we will make sure the cut is perfectly precise.

Let’s see how much chocolate we get to eat!”

Input

The input consists of two space-separated integers M and N given on a single line, (where 1 < M, N < 10'8). The
numbers M and N denote the number of blocks in one column and in one row, respectively, in the chocolate bar.

Output

Print the number of blocks of the chocolate bar which are cut into exactly two pieces of equal area.

Sample Input 1 Sample Output 1
| 6 10 | 2
Sample Input 2 Sample Output 2

‘ 75206452536745713 10322579177493903 ‘ 40318322589 ‘

ACM-ICPC North America Qualifier 2019 Problem B: Diagonal Cut 3

https://pixabay.com/photos/chocolate-scales-knife-kitchen-2360225/
https://pixabay.com/photos/chocolate-scales-knife-kitchen-2360225/

This page is intentionally left blank.

<)

° -
FQ % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

000

Problem C
Gerrymandering

Electoral systems across the world can vary widely. In some systems, such as
winner-take-all, the winner is determined by the plurality of votes—the candi-
date that receives the most votes wins, and the loser(s) do not get a position.

Such elections can have “wasted votes.” Conceptually, a wasted vote is a vote
that did not affect the election outcome. While the exact definition of a wasted
vote varies, we’ll adopt the following definition: in an election with V' voters,
every vote for a losing candidate is wasted (these are called lost votes), and every
vote for a winning candidate beyond the strict majority of |V/2]| + 1 votes the
candidate needs to win is wasted (these are called excess votes). For this problem
we’ll consider a two-party system (let’s call the parties A and B) with elections
that always involve one candidate from each party.

The original political cartoon about Gerrymandering. Image from

Let’s illustrate wasted votes with a simple example between two candidates in Wikipedia.
a district. Suppose that the candidate for party A receives 100 votes and the

candidate for party B receives 200 votes. All 100 votes for party A are wasted

(lost votes for A), and 49 votes for party B are wasted (excess votes for B). This is because B needs 151 (| (100 +
200)/2] 4 1) votes to win (over A), so the remaining 49 are wasted.

Political scientists use wasted votes to compute the efficiency gap, a single number that summarizes wasted votes.
Suppose we have a number of races in different districts, where each district elects one person. Across all districts
there are V' total votes cast, with w 4 total wasted votes for party A and wp total wasted votes for party B. Then the
efficiency gap is:
E(V,wa,wp) = M_
|4

A low efficiency gap indicates that the elections are competitive, and that the number of candidates elected from
each party is representative of the total voting share for each party. When the efficiency gap is high, this can be an
indication of gerrymandering. Gerrymandering refers to organizing voting districts in a way that favors a particular
political outcome. Two common ways of doing this are to “pack” similar voters into districts, or “crack” them across
multiple districts; both ways tend to diminish those voters’ influence in electing candidates they would like to win.

In an election, districts are made up of precincts. A precinct is an indivisible group of voters. The votes for all
precincts in a district are added together to find the results for that district. In this problem you are given a description
of a number of precincts: the party vote totals for each precinct, and how those precincts have been grouped into
districts. For each district, determine the party that wins and the wasted votes for each party. Then determine the
efficiency gap between the two parties over all the districts.

Input

The input describes one election. The first line contains two integers P and D, where 1 < P < 10000 and 1 < D <
min(1000, P). These indicate, respectively, the number of voting precincts and districts. Following this are P lines
describing the precincts. Line ¢ contains 3 numbers: the district d; that precinct ¢ is assigned to (1 < d; < D), the
number of votes for the candidate from party A (0 < a; < 100000), and the number of votes for the candidate from
party B (0 < b; < 100000). It is guaranteed that:

ACM-ICPC North America Qualifier 2019 Problem C: Gerrymandering 5

https://commons.wikimedia.org/wiki/File:The_Gerry-Mander_Edit.png

° -
FQ % IC C International Collegiate oaramming
p P"°9ramming Contest — tools sponsor

° " icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

000

e for each precinct 4, 0 < a; + b;,
e cach district is assigned at least one precinct, and

e there are no ties within any district.

Output

For each of the districts from 1 to D, print which party wins (a single character, either A or B). Then print the number
of wasted votes for party A and for party B, in order. Finally, after reporting on all the districts, print the efficiency
gap as measured over all the districts. The efficiency gap should be accurate to within an absolute error of 1076.

Sample Input 1 Sample Output 1
53 B 100 49

1 100 200 A1 197

2 100 99 A 49 100

3 100 50 0.1965897693
3 100 50

2 100 98

Sample Input 2 Sample Output 2
4 4 A 0 99

3 100 99 A 0 99

2 100 99 A0 99

1 100 99 A0 99

4 100 99 0.4974874372
Sample Input 3 Sample Output 3
4 4 A 0 99

4 99 100 B 99 0

1 100 99 A0 99

3 100 99 B 99 0

2 99 100 0.0000000000

ACM-ICPC North America Qualifier 2019 Problem C: Gerrymandering 6

° -
F! % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

2009

Problem D

Missing Numbers

You enjoy your new job as a teacher of young children. It’s fun to see them
learning to count, recognize letters, draw, and interact with the world.

One common problem you’ve noticed is that children often forget numbers when
counting. For example, early on they might count “one, two, three, five, six.”
You have to remind them about that “four” that they didn’t say. And as they
get more proficient and clever, they may use the “quick” way of counting: “one,
two, skip a few, ninety-nine, one hundred!”

Photo by Valerie Everett.

Please write a program that can help you (and your students) identify the missing numbers when they are counting.

Input

The first line of input contains a single integer n, where 1 < n < 100. Each of the next n lines contains one number
that the child recited. Each recited number is an integer between 1 and 200 (inclusive). They are listed in increasing
order, and there are no duplicates.

Output

If the child recited all the numbers between 1 and the last number they recited, then print good job.

If the child missed any numbers between 1 and the last number they recited, then print those missing numbers in
increasing numeric order, one per line.

Sample Input 1 Sample Output 1
9 1
2 3
4 6
5 12
;

8

9

10

11

13

ACM-ICPC North America Qualifier 2019 Problem D: Missing Numbers 7

https://www.flickr.com/photos/valeriebb/1459287350/

) AN
F International Collegiate s programming
) % ICpC Programming Contest B> | fools sponsor

° " icpc.foundation
event
sponsor

000

2019 ICPC North America Qualifier Contest

Sample Input 2 Sample Output 2
5 good job

1

2

3

4

5

ACM-ICPC North America Qualifier 2019 Problem D: Missing Numbers 8

<)

° -
F! % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

000

Problem E
NVWLS

NVWLS, or “No Vowels” puzzles are popular among puzzle enthusiasts.
For example, consider the following no-vowels message:

BTWNSBTLSHDNGNDTHBSNCEFLGHTLSTHNNCFQLSN

which is inscribed on the famous “Kryptos” statue located at the CIA’s
headquarters in Virginia. This message is derived from the following sen-
tence by removing all vowels and spaces:

BETWEEN SUBTLE SHADING AND THE ABSENCE OF LIGHT
LIES THE NUANCE OF IQLUSION

Given a dictionary (a set of words that can be used to construct a sentence)
and a message (which comes from a sentence which uses only those words,
but with all vowels and spaces removed), reconstruct the original sentence
using the dictionary words!

Input

The first line contains an integer n denoting the number of words in the dictionary. The next n lines each contain a
dictionary word using one or more uppercase English letters. Each word contains at least one consonant.

For the purposes of this problem, the letters A, E, I, O, and U are vowels and all other letters are consonants.

The dictionary is followed by a single non-empty line of uppercase consonants representing the no-vowels message.
It is guaranteed that the no-vowels message can be constructed in at least one way using only the dictionary words.

The total number of letters in all dictionary words is no greater than 100 000. The total number of letters in the
no-vowels message does not exceed 300 000.

Output

Output a whitespace-separated sequence of dictionary words that yields the original no-vowels message when all
spaces and vowels are removed. If there are multiple reconstructions, choose the one with the largest overall number
of vowels. If there are still multiple reconstructions, you may output any one of them. No judge input will require
your program to output more than 15 000 000 characters.

ACM-ICPC North America Qualifier 2019 Problem E: NVWLS 9

https://commons.wikimedia.org/wiki/File:Kryptos_sculptor.jpg

° PN
F International Collegiate s programming
) % ICpC Programming Contest B> | fools sponsor

°® " icpc.foundation
event
sponsor

00!

2019 ICPC North America Qualifier Contest

Sample Input 1

11
BETWEEN
SUBTLE
SHADING
AND

THE
ABSENCE
OF

LIGHT
LIES
NUANCE
IQLUSION
BTWNSBTLSHDNGNDTHBSNCEFLGHTLSTHNNCFQLSN

Sample Output 1
BETWEEN SUBTLE SHADING AND THE ABSENCE OF LIGHT LIES THE NUANCE OF IQLUSION

Sample Input 2 Sample Output 2

4 NA NA NA NA NA NA NA NA NA NA NA NA NA BATMAN
NA

NNANNA

NANNA

BATMAN
NNNNNNNNNNNNNBTMN

ACM-ICPC North America Qualifier 2019 Problem E: NVWLS 10

° -
FQ % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

°® " icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

00!

Problem F

Prospecting

Prospectin’ Pete has a lead on a new titanium mine, and needs your help pitching a mining operation to investors. The
mine can be represented as a tree: the mine entrance is the root of the tree, other tree nodes are pockets of underground
titanium ore, and the tree edges are potential tunnels Pete can dig between two pockets (or between the mine entrance
and one pocket, for edges adjacent to the root node). The tunnel connecting the i-th ore pocket to its parent has a
length of y; feet. One of the tree leaves contains the motherlode, and each other ore pocket contains x; dollars worth
of ore.

Pete begins at the mine entrance, and his goal is to reach the motherlode. Obviously, Pete cannot travel to pocket ¢
until all y; feet of dirt in the tunnel leading to it has been removed. But once a tunnel has been completely excavated,
Pete can travel that tunnel, in both directions, as many times as he wants.

Pete explores the mines by repeatedly performing the following steps, in order:

1. Pete chooses a tunnel that he can reach from his current location, and that has not yet been fully excavated.
2. Pete digs through one foot of the chosen tunnel; this costs him one dollar.

3. If the tunnel is now completely clear, Pete travels through the tunnel to the newly opened pocket and mines the
ore. If that pocket contains the motherlode, then he stops exploring the mine. Otherwise, he sells the ore in that
pocket for x; dollars and continues exploring.

Note that the tunnel Pete chooses to dig in the first step of each round of digging does not need to be adjacent to his
current location, so long as Pete can reach the tunnel by traveling through the mine along a sequence of completely-
excavated tunnels. He can also choose a different tunnel each round, even if the tunnel he was digging in the previous
round is not yet completely excavated. If Pete ends a round of digging with no money, and without having reached the
motherlode, the mining operation is a bust and Pete goes home bankrupt.

Pete has surveyed the geology of the area and knows the mine layout, as well as the amount of ore in each chamber,
but hasn’t yet decided on a strategy for how to dig the tunnels. He knows that in addition to any riches he earns from
the mine itself, he will need some amount of startup money in order to reach the motherlode, and so he is courting
investors. He wants to present them with two pieces of information:

e The minimum number of dollars a that Pete must begin with in order for his venture to be successful even in
the worst-case: for it to be guaranteed that he reaches the motherlode no matter how he chooses the tunnel to
excavate during each round of digging.

e The minimum number of dollars b that Pete must begin with in order to reach the motherlode in the best-case

scenario where Pete chooses tunnels optimally.

This information will allow the investors to decide how much to fund Pete, based on how much they trust him to dig
optimally without making any mistakes.

Given the mine layout, compute a and b.

ACM-ICPC North America Qualifier 2019 Problem F: Prospecting 11

° -
FQ % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

° " icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

000

entrance entrance

o (ML)

Figure F.1: Illustrations of sample inputs 1 (on the left) and 2. Edges represent tunnels and nodes represent ore pockets.
Ore values x; in each pocket and length y; of each tunnel are written in black text (“ML” stands for the motherlode).
Nodes are labeled in red with their indices.

Input

The first line of input contains an integer n (2 < n < 200 000), the number of nodes in the tree representing Pete’s
mine. The remaining input consists of n — 1 lines, the ¢th of which (starting at 1) contains three integers p;, z;, and
y; encoding information about the ith node of the tree. p; (0 < p; < 1) is the index of the ith node’s parent in the
tree. A parent index of zero means that the node’s parent is the mine entrance (root of the tree). x; is the value of the
ore in node ¢, and y; (1 < y; < 1000) is the length of the tunnel connecting node p; to node <. Exactly one node has
x; = —1, indicating that the node contains the motherlode; all other inputs satisfy 0 < x; < 1 000.

Note that node zero is the mine entrance; it contains no ore and has no corresponding line in the input. You may
assume that the motherlode is a leaf of the tree (no node has the motherlode node as a parent).

Output

Print two space-separated integers a and b, the worst-case and best-case investment Pete needs in order to clear a path
to the motherlode, as described in more detail above.

Sample Explanation

Consider the mine described in sample input 1 and illustrated in Figure F.1. Pete needs 8 dollars to guarantee he
reaches the motherlode even with poor digging choices: in the worst-case scenario he spends 2 dollars to completely
clear the tunnel leading into pocket 2, and then 5 more dollars to clear the tunnel leading to pocket 4. With his last
dollar he either digs his way to the motherlode, or opens the tunnel to pocket 1, which gives him enough money to
reach the motherlode in the next round of digging. In the best-case scenario he needs only one dollar: he spends that
dollar to first dig through the tunnel leading into pocket 1, and with the 3 dollars of ore he mines there, he can dig
through the two tunnels on the path from the entrance to the motherlode.

ACM-ICPC North America Qualifier 2019 Problem F: Prospecting 12

° -
F! % IC C International Collegiate oaramming
p P"°9ramming Contest — tools sponsor

° " icpc.foundation

2019 ICPC North America Qualifier Contest
i event
sponsor

A second example is provided in sample input 2 which is also illustrated in Figure F.1. In one worst-case scenario,
Pete excavates three feet of the tunnel leading to pocket 1, two feet of the tunnel leading to pocket 3, and one foot of
the tunnel leading to pocket 4, all without mining any ore. This costs him 6 dollars. With a seventh dollar, Pete is
guaranteed to tunnel into an ore pocket which finances exploration of the rest of the mine (including the motherlode).
In the best-case scenario, Pete needs only a single dollar: he first digs to pocket 2, then 4, then 3, then 1, finding the
motherlode.

000

Sample Input 1 Sample Output 1
5 8 1

031

00 2

2 -1 1

205

Sample Input 2 Sample Output 2
5 71

0 -1 4

021

0 4 3

0 3 2

ACM-ICPC North America Qualifier 2019 Problem F: Prospecting 13

This page is intentionally left blank.

° -
FQ % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

2009

Problem G

Research Productivity Index

Angela is a new PhD student and she is nervous about the upcoming paper sub-
mission deadline of this year’s research conference. She has been working on
multiple projects throughout the past year. Luckily most of the projects con-
cluded successfully, and she came up with n candidate papers. However not all
of the papers were born equal—some have better results than others. Her advisor
believes she should only submit the papers with “good enough” results so they
have a high chance of getting accepted.

Angela’s research group has a unique way of evaluating the success of paper
submissions. They use the research productivity index, defined as a%/¢, where s
is the total number of papers submitted, and a is the number of papers that are
accepted by the conference. When a = 0, the index is defined to be zero. For
example:

if one paper is submitted and it gets accepted, the index is 1*/1 = 1;

if 4 papers are submitted and all get accepted, the index is 44/* = 4;

if 10 papers are submitted and 3 get accepted, the index is 3%/10 ~ 1.390389;

if 5 papers are submitted and 4 get accepted, the index is 4*/° ~ 3.031433;

e if 3 papers are submitted and all get rejected (a = 0), the index is 0.
Intuitively, to get a high research productivity index one wants to get as many papers accepted as possible while
keeping the acceptance rate high.

For each of her n papers, Angela knows exactly how likely it is that the conference would accept the paper. If she
chooses wisely which papers to submit, what is the maximum expected value of her research productivity index?

Input

The first line of the input has a single integer n (1 < n < 100), the number of Angela’s candidate papers. The next
line has n space-separated integers giving the probability of each paper getting accepted. Each probability value is
given as an integer percentage between 1 and 100, inclusive.

Output

Output the maximum expected value of Angela’s research productivity index. Your answer is considered correct if it
has an absolute or relative error of no more than 1075,

Sample Input 1 Sample Output 1

5 2.220889579
30 50 70 60 90

ACM-ICPC North America Qualifier 2019 Problem G: Research Productivity Index 15

° PN
F International Collegiate s programming
) % ICpC Programming Contest B> | fools sponsor

° " icpc.foundation
event
sponsor

000

2019 ICPC North America Qualifier Contest

Sample Input 2 Sample Output 2

6 2.599738456
30 90 30 90 30 90

Sample Input 3 Sample Output 3

4 0.368937005
10 10 10 10

ACM-ICPC North America Qualifier 2019 Problem G: Research Productivity Index 16

° -
F! % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

° " icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

000

Problem H

Running Routes

The administrators at Polygonal School want to increase enrollment, but they are unsure if their gym can support
having more students. Unlike a normal, boring, rectangular gym, the gym floor at Polygonal is a regular n-sided
polygon! They affectionately refer to the polygon as P.

The coach has drawn several running paths on the floor of the gym. Each running path is a straight line segment
connecting two distinct vertices of P. During gym class, the coach assigns each student a different running path, and
the student then runs back and forth along their assigned path throughout the class period. The coach does not want
students to collide, so each student’s path must not intersect any other student’s path. Two paths intersect if they share
a common point (including an endpoint).

Given a description of the running paths in P, compute the maximum number of students that can run in gym class
simultaneously.

Figure H.1: Illustrations of the two sample inputs, with possible solutions highlighted in thick red lines. Solid black
lines represent running paths that are not assigned to a student, and dashed black lines are used to show the boundary
of P in places where no running path exists.

Input
The first line contains an integer n (3 < n < 500), the number of vertices in P. (The vertices are numbered in
increasing order around P.) Then follows n lines of n integers each, representing a n X n symmetric binary matrix

which we’ll call M. The j™ integer on the i™ line M;; is 1 if a running path exists between vertices i and j of the
polygon, and 0 otherwise. It is guaranteed that for all 1 <4, 5 < n, M;; = M;; and M;; = 0.

Output

Print the maximum number of students that can be assigned to run simultaneously on the running paths, given the
above constraints.

ACM-ICPC North America Qualifier 2019 Problem H: Running Routes 17

° PN
F International Collegiate s programming
) % ICpC Programming Contest B> | fools sponsor

° " icpc.foundation
event
sponsor

000

2019 ICPC North America Qualifier Contest

Sample Input 1 Sample Output 1
3 1

011

101

110

Sample Input 2 Sample Output 2
6 2
000100

000011

000011

100000

011000

011000

ACM-ICPC North America Qualifier 2019 Problem H: Running Routes 18

° -
F! % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

e

00!

Problem |
Slow Leak

You are an avid cyclist and bike every day between your home and school. Usu-
ally, your ride is uneventful and you bike along the shortest path between home
and school. After school this afternoon you realized you have a slow leak in your
bike tire—the tire can hold some air, but not for long. Refilling the tire allows
you to ride your bike for some distance, after which your tire goes flat again and
it becomes impossible to ride any further (and you refuse to walk your bicycle).

Luckily for you, your city has installed several bike repair stations at intersec-
tions throughout town where you can refill your tire and bike again until the tire
goes flat. There’s a repair station at your school too, so that you can fill up your
tire before you start on your trip home.

TheDigital Way

You’ve calculated how far you can bike before your tire runs out of air and you know the layout of your town, including
all the intersections, distances between them, and the locations of the repair stations. What is the shortest possible trip
from school to your home that you can take without becoming stuck due to a flat tire? (You do not become stuck if
you roll into a repair station, or your home, at the exact same time as your tire goes flat.)

Figure I.1: An illustration of the two sample inputs.

Input

The first line of input contains four integers n, m, ¢, and d, satisfying 2 < n < 500,0 <m <n(n—1)/2,0 <t <n
and 0 < d < 23!, The value n represents the number of intersections in the city, m represents the number of roads
in the city, ¢ is the number of repair stations and d is the distance that you can bike (starting with a fully inflated tire)
before your tire goes flat again. The intersections are numbered from 1 to n. Your school is at intersection 1 and your
home is at intersection n.

The second line of input contains ¢ integers, with values between 2 and n — 1, inclusive. These are the intersections

ACM-ICPC North America Qualifier 2019 Problem I: Slow Leak 19

https://pixabay.com/photos/cycle-flat-tire-point-pumpkin-1578341/

° -
F! % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

° " icpc.foundation

2019 ICPC North America Qualifier Contest
i event
sponsor

where the repair stations are located (excluding your school’s repair station). All integers on this line are unique.

000

The next m lines represent the roads in your town. Each has three integers ¢, j, k, where 1 < ¢ < j < n, and
0 < k < 23!, These three integers represent that there is a direct road from intersection 4 to intersection j of length k.
Roads can be traveled in either direction. There is at most one road between any two intersections.

Output

Print the minimum total distance you need to travel to reach home from school without getting stuck due to a flat tire.
If the trip is not possible, output the word stuck on a single line instead.

It is guaranteed that if the trip is possible, the minimum distance D satisfies 0 < D < 231

Sample Explanation

In the first sample input, if your tire did not have a leak then the shortest path home would have a distance of 9, going
from the school through intersections 3 and 5. However, due to the leak, you can only travel a distance of 4 before you
need to refill the tire, requiring you to use the repair stations at intersections 2 and 5, for a total distance of 12.

In the second sample input, if your tire did not have a leak, then the shortest path home would have a distance of 12.
But since your tire only lasts for a distance of 10, there’s no path where your bike tire will not go flat somewhere along
the way. Even when using repair station at intersection 2, you get stuck before you can reach either your home or the
repair station at intersection 5.

Sample Input 1 Sample Output 1
2 4 12

~J

O W w NP PN
o OY Ul W w N O
DD RN W O

Sample Input 2 Sample Output 2
2 10 stuck

~J

g D W NP PN
o OY U W WO
N W o R~ N

ACM-ICPC North America Qualifier 2019 Problem I: Slow Leak 20

° -
F! % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

2009

Problem J
Stop Counting!

The Martingale casino is creating new games to lure in new gamblers who tire
of the standard fare. Their latest invention is a fast-paced game of chance called
Stop Counting!, where a single customer plays with a dealer who has a deck of
cards. Each card has some integer value.

One by one, the dealer reveals the cards in the deck in order, and keeps track
of the sum of the played cards and the number of cards shown. At some point
before a card is dealt, the player can call “Stop Counting!” After this, the dealer
continues displaying cards in order, but does not include them in the running
sums. At some point after calling “Stop Counting!”, and just before another
card is dealt, the player can also call “Start Counting!” and the dealer then includes subsequent cards in the totals. The
player can only call “Stop Counting!” and “Start Counting!” at most once each, and they must call “Stop Counting!”
before they can call “Start Counting!”. A card is “counted” if it is dealt before the player calls “Stop Counting!” or is
dealt after the player calls “Start Counting!”

Photo by Drew Rae

The payout of the game is then the average value of the counted cards. That is, it is the sum of the counted cards
divided by the number of counted cards. If there are no counted cards, the payout is 0.

You have an ‘in’” with the dealer, and you know the full deck in order ahead of time. What is the maximum payout you
can achieve?

Input

The first line of the input contains a single integer 1 < N < 1000 000, the number of cards in the deck.

The second line of input contains N space-separated integers, the values on the cards. The value of each card is in the
range [—10%, 10°]. The cards are dealt in the same order they are given in the input.

Output

Output the largest attainable payout. The answer is considered correct if the absolute error is less than 1075, or the
relative error is less than 1077,

Sample Explanation

In the first sample, by calling “Stop Counting!” before the —10 and “Start Counting!” before the final 10, we can
achieve an average of 10.0 with the cards that are counted.

In the second sample, all values are negative, so the best strategy is to call “Stop Counting!” before the first card is
dealt and call “Start Counting!” after the last card is dealt. Since no cards were counted, the average of the counted
cards is 0.0.

ACM-ICPC North America Qualifier 2019 Problem J: Stop Counting! 21

https://www.pexels.com/photo/person-playing-poker-1871508/

° PN
F International Collegiate s programming
) % ICpC Programming Contest B> | fools sponsor

° " icpc.foundation
event
sponsor

000

2019 ICPC North America Qualifier Contest

Sample Input 1 Sample Output 1

5 10.000000000
10 10 -10 -4 10

Sample Input 2 Sample Output 2

4 0.000000000
-3 -1 -4 -1

ACM-ICPC North America Qualifier 2019 Problem J: Stop Counting! 22

1 International Collegiate
!g} , % ICpC Programming Contest
© icpc.foundation

00!

BRAINS programming
— tools sponsor

2019 ICPC North America Qualifier Contest

event
sponsor

Problem K

Summer Trip

Leo has started a job in a travel agency. His first task is to organize a summer
trip to an exotic overseas city. During the summer season, events of various
types take place in the city: sports matches, concerts, beach parties, and many
others. At any given time, there is exactly one event taking place. Events of any
particular type may take place more than once during the season. The itinerary
of events that Leo offers to his clients cannot be chosen arbitrarily; the company
requires them to form a so-called “good itinerary.” A good itinerary is a consec-
utive sequence of at least two events in the summer season, where the first and
last events are of different types, and they are both unique among all event types

Cartoon of items related to travel. Image from mohamed_hassan at
pixabay.com

during the sequence. For example, if the first event in a good itinerary is a beach party, none of the other events during
the itinerary can also be a beach party. There are no other restrictions on the event types in the sequence of a good

itinerary.

Before he starts organizing the trip, Leo wants to know the total number of good itineraries that are possible given a

calendar of events that will take place over the summer season.

Input

The input consists of one line with a string describing the sequence of event types in the summer season. All characters
are lowercase English letters (* a’ — ’ z’), with different letters represent different types of events. Character ¢ of the
string encodes the ¢th event of the summer. There are no blanks or spaces in the string.

The length of the input string is at least 2 and at most 100 000 characters.

Output

Print the number of good itineraries that exist for the given summer season.

Sample Input 1 Sample Output 1
‘abbcccddddeeeee ‘ 10 ‘
Sample Input 2 Sample Output 2
‘thenumberofgoodstringsis ‘ 143 ‘

ACM-ICPC North America Qualifier 2019 Problem K: Summer Trip

23

https://pixabay.com/illustrations/map-flight-vacation-luggage-visa-3953229/
https://pixabay.com/illustrations/map-flight-vacation-luggage-visa-3953229/

This page is intentionally left blank.

° -
F! % IC C International Collegiate oaramming
p P"°9ramming Contest — tools sponsor

° " icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

000

Problem L

Traveling Merchant

There is a long east-west road which has n towns situated along } . EETG m-ﬁv e -‘{
it, numbered 1 to n from west to east. All towns buy and sell the , — |
same kind of goodie. The value of a goodie fluctuates according to a ‘
weekly schedule. A town buys and sells a goodie at its value in that
town on that particular day. At town i, the value of a goodie changes
by d; every day in the first half of a week, and changes by —d; every
day in the second half of a week. In other words, the value of a
goodie at town ¢ is v; on Mondays and Sundays, v; + d; on Tuesdays
and Saturdays, v; + 2d; on Wednesdays and Fridays, and v; + 3d; |
on Thursdays. B s

Lithograph by Louis Haghe from an original by David Roberts, Wikipedia

pra—

A merchant is making a business travel plan. His trip begins at a

starting town s and ends at a destination town ¢, visiting each town

from s to ¢ (inclusive) exactly once. The merchant starts the trip on a Monday. It takes him exactly one day to travel
between adjacent towns and every day he travels to the next town on the path to the destination. He may buy exactly
one goodie at a town along the trip and sell that goodie at a town he visits later. He can only buy once and sell once.
The merchant would like to know the maximum possible profit of ¢ travel plans with different choices of town s and
town ¢.

Input
The first line of the input has a single integer n (2 < n < 10°). The next n lines each have two integers. The ith line
has v; (1 < v; < 10%) and d; (1 < v; + 3d; < 10%). The next line has a single integer ¢ (1 < ¢ < 10°). The following

q lines each give a pair of integers s and t (1 < s,t < n, s # t), representing one travel plan from town s to town ¢. If
s < t the merchant travels west to east, otherwise he travels east to west.

Output

For each travel plan, output the maximum profit the merchant can make on a single line. If the merchant cannot make
any profit, output 0.

ACM-ICPC North America Qualifier 2019 Problem L: Traveling Merchant 25

https://en.wikipedia.org/wiki/Caravan_(travellers)

) AN
F International Collegiate s programming
) % ICpC Programming Contest B> | fools sponsor

° " icpc.foundation
event
sponsor

000

2019 ICPC North America Qualifier Contest

Sample Input 1 Sample Output 1
5 4
12 2
21 2
50 1
4 -1 0
7 -2

5

15

51

31

45

5 4

ACM-ICPC North America Qualifier 2019 Problem L: Traveling Merchant 26

° -
F! % ICDC International Collegiate oaramming
p Programming Contest — tools sponsor

icpc.foundation

2019 ICPC North America Qualifier Contest

event
sponsor

2009

Problem M
Zipline

A zipline is a very fun and fast method of travel. It uses a very
strong steel cable, connected to two poles. A rider (which could be a
person or some cargo) attaches to a pulley which travels on the cable.
Starting from a high point on the cable, gravity pulls the rider along
the cable.

Your friend has started a company which designs and installs zi-
plines, both for fun and for utility. However, there’s one key prob-
lem: determining how long the cable should be between the two
connection points. The cable must be long enough to reach between
the two poles, but short enough that the rider is guaranteed to stay
a safe distance above the ground. Help your friend determine these
bounds on the length.

i« 5
Photo by Virginia State Parks.

The cable connects to two vertical poles that are w meters apart, at heights g and h meters, respectively. You may
assume that the cable is inelastic and has negligible weight compared to the rider, so that there is no sag or slack in the
cable. That is, at all times the cable forms two straight line segments connecting the rider to the two poles, with the
sum of the segments lengths equal to the total length of the cable. The lowest part of the rider hangs r meters below
the cable; therefore the cable must stay at least » meters above the ground at all times during the ride. The ground is
flat between the two poles. Please refer to the diagram in Figure M.1 for more information.

Pole 1 Pole 2
(height g) (height h)
~— (height r)

Ground (width w)

Figure M.1: A zipline, annotated with the four variables used to describe it.

Input
The input starts with a line containing an integer n, where 1 < n < 1000. The next n lines each describe a zipline

configuration with four integers: w, g, h, and r. These correspond to the variables described above. The limits on their
values are: 1 < w, g, h < 1000000, and 1 < r < min(g, h).

ACM-ICPC North America Qualifier 2019 Problem M: Zipline 27

https://www.flickr.com/photos/vastateparksstaff/34247700580

° PN
F International Collegiate s programming
) % ICpC Programming Contest B> | fools sponsor

° " icpc.foundation
event
sponsor

For each zipline, print a line of output with two lengths (in meters): the minimum and maximum length the cable can
be while obeying the above constraints. Both lengths should have an absolute error of at most 10~6.

000

2019 ICPC North America Qualifier Contest

Output

Sample Input 1 Sample Output 1

2 1000.00000000 1012.71911209
1000 100 100 20 100.49875621 110.07270325
100 20 30 2

ACM-ICPC North America Qualifier 2019 Problem M: Zipline 28

