
North America Qualifier 2017

Problem A
Birthday Cake

Photo by 4rank

On his birthday, John’s parents made him a huge birthday cake! Ev-
eryone had a wonderful dinner, and now it’s time to eat the cake. There
are n candles on the cake. John wants to divide the cake into n pieces
so that each piece has exactly one candle on it, and there are no left-
over pieces. For that, he made m cuts across the cake. Could you help
check if John’s cuts successfully divide the candles on the cake?

Formally, the cake is a circle of radius r centered at (0, 0). The candles
are n distinct points located strictly inside the circle. Each cut is a
straight line ax+ by + c = 0, described by three coefficients a, b, and
c.

Input

Input starts with three integers n (1 ≤ n ≤ 50), m (1 ≤ m ≤ 15), and
r (1 ≤ r ≤ 100) on the first line.

The next n lines give the locations of the candles. Each line has two integers x and y giving the coordi-
nates of one candle (0 ≤

√
x2 + y2 < r).

The next m lines give the coefficients of the cutting lines. Each line has three integers a, b, and c
(0 ≤ |a|, |b| ≤ 100, 0 ≤ |c| ≤ 20 000) describing a line of the form ax+ by + c = 0. The values a and
b are not both zero.

All candles and lines are distinct. No candle is on a cut line. No line is completely outside or tangent to
the cake. The input guarantees that the number of cake pieces remains the same if any cut line is shifted
by at most 10−4 in any direction. The input also guarantees that each candle remains in the interior of
the same piece of cake if its position is shifted by at most 10−4 in any direction.

Output

Output “yes” if John’s cuts successfully divide the cake so that each piece he obtains has exactly one
candle on it. Otherwise, output “no”.

Sample Input 1 Sample Output 1

4 2 3
0 1
1 0
-1 0
0 -1
-1 1 0
2 1 0

yes

ACM-ICPC North America Qualifier 2017 Problem A: Birthday Cake 1

https://www.flickr.com/photos/fcharlton/1799065990/

North America Qualifier 2017

Sample Input 2 Sample Output 2

4 3 3
0 1
1 2
-1 2
0 -1
-1 1 -2
-1 -1 2
0 -1 0

no

Sample Input 3 Sample Output 3

3 2 3
2 1
0 0
-1 -2
1 1 -2
3 6 12

yes

Sample Input 4 Sample Output 4

3 1 2
0 0
-1 1
1 -1
-2 2 1

no

ACM-ICPC North America Qualifier 2017 Problem A: Birthday Cake 2

North America Qualifier 2017

Problem B
Bumped!

Photo by jtosh/Flickr

Peter returned from the recently held ACM ICPC World Finals
only to find that his return flight was overbooked and he was
bumped from the flight! Well, at least he wasn’t beat up by the
airline and he’s received a voucher for one free flight between any
two destinations he wishes.

He is already planning next year’s trip. He plans to travel by car
where necessary, but he may be using his free flight ticket for one
leg of the trip. He asked for your help in his planning.

He can provide you a network of cities connected by roads, the
amount it costs to buy gas for traveling between pairs of cities,
and a list of available flights between some of those cities. Help Peter by finding the minimum amount
of money he needs to spend to get from his hometown to next year’s destination!

Input

The input consists of a single test case. The first line lists five space-separated integers n, m, f , s, and
t, denoting the number of cities n (0 < n ≤ 50 000), the number of roads m (0 ≤ m ≤ 150 000), the
number of flights f (0 ≤ f ≤ 1 000), the number s (0 ≤ s < n) of the city in which Peter’s trip starts,
and the number t (0 ≤ t < n) of the city Peter is trying to travel to. (Cities are numbered from 0 to
n− 1.)

The first line is followed by m lines, each describing one road. A road description contains three space-
separated integers i, j, and c (0 ≤ i, j < n, i 6= j and 0 < c ≤ 50 000), indicating there is a road
connecting cities i and j that costs c cents to travel. Roads can be used in either direction for the same
cost. All road descriptions are unique.

Each of the following f lines contains a description of an available flight, which consists of two space-
separated integers u and v (0 ≤ u, v < n, u 6= v) denoting that a flight from city u to city v is available
(though not from v to u unless listed elsewhere). All flight descriptions are unique.

Output

Output the minimum number of cents Peter needs to spend to get from his home town to the competition,
using at most one flight. You may assume that there is a route on which Peter can reach his destination.

ACM-ICPC North America Qualifier 2017 Problem B: Bumped! 3

https://www.flickr.com/photos/jtosh/195367494

North America Qualifier 2017

Sample Input 1 Sample Output 1

8 11 1 0 5
0 1 10
0 2 10
1 2 10
2 6 40
6 7 10
5 6 10
3 5 15
3 6 40
3 4 20
1 4 20
1 3 20
4 7

45

Sample Input 2 Sample Output 2

8 11 1 0 5
0 1 10
0 2 10
1 2 10
2 6 40
6 7 10
5 6 10
3 5 15
3 6 40
3 4 20
1 4 20
1 3 30
4 7

50

ACM-ICPC North America Qualifier 2017 Problem B: Bumped! 4

North America Qualifier 2017

Problem C
Canonical Coin Systems

Image by Diane Wiens, Used with permission

A coin system S is a finite (nonempty) set of distinct positive inte-
gers corresponding to coin values, also called denominations, in a real
or imagined monetary system. For example, the coin system in com-
mon use in Canada is {1, 5, 10, 25, 100, 200}, where 1 corresponds to
a 1-cent coin and 200 corresponds to a 200-cent (2-dollar) coin. For
any coin system S, we assume that there is an unlimited supply of
coins of each denomination, and we also assume that S contains 1,
since this guarantees that any positive integer can be written as a sum
of (possibly repeated) values in S.

Cashiers all over the world face (and solve) the following problem: For
a given coin system and a positive integer amount owed to a customer,
what is the smallest number of coins required to dispense exactly that
amount? For example, suppose a cashier in Canada owes a customer
83 cents. One possible solution is 25+25+10+10+10+1+1+1, i.e.,
8 coins, but this is not optimal, since the cashier could instead dispense
25 + 25 + 25 + 5 + 1 + 1 + 1, i.e., 7 coins (which is optimal in this case). Fortunately, the Canadian
coin system has the nice property that the greedy algorithm always yields an optimal solution, as do the
coin systems used in most countries. The greedy algorithm involves repeatedly choosing a coin of the
largest denomination that is less than or equal to the amount still owed, until the amount owed reaches
zero. A coin system for which the greedy algorithm is always optimal is called canonical.

Your challenge is this: Given a coin system S = {c1, c2, . . . , cn}, determine whether S is canonical
or non-canonical. Note that if S is non-canonical then there exists at least one counterexample, i.e., a
positive integer x such that the minimum number of coins required to dispense exactly x is less than the
number of coins used by the greedy algorithm. An example of a non-canonical coin system is {1, 3, 4},
for which 6 is a counterexample, since the greedy algorithm yields 4 + 1 + 1 (3 coins), but an optimal
solution is 3 + 3 (2 coins). A useful fact (due to Dexter Kozen and Shmuel Zaks) is that if S is non-
canonical, then the smallest counterexample is less than the sum of the two largest denominations.

Input

Input consists of a single case. The first line contains an integer n (2 ≤ n ≤ 100), the number of de-
nominations in the coin system. The next line contains the n denominations as space-separated integers
c1 c2 . . . cn, where c1 = 1 and c1 < c2 < . . . < cn ≤ 106.

Output

Output “canonical” if the coin system is canonical, or “non-canonical” if the coin system is
non-canonical.

Sample Input 1 Sample Output 1

4
1 2 4 8

canonical

ACM-ICPC North America Qualifier 2017 Problem C: Canonical Coin Systems 5

https://www.teacherspayteachers.com/Store/One-Teachers-Adventures

North America Qualifier 2017

Sample Input 2 Sample Output 2

3
1 5 8

non-canonical

Sample Input 3 Sample Output 3

6
1 5 10 25 100 200

canonical

ACM-ICPC North America Qualifier 2017 Problem C: Canonical Coin Systems 6

North America Qualifier 2017

Problem D
Cat and Mice

Photo by katie_mccolgan/Flickr

Everyone knows that cats love to eat mice. Naturally, when given
the opportunity, any cat wants to eat as many mice as possible.

It just so happens that Cartesian Cat lives on the Cartesian Plane
with her home located at (0, 0). Obviously, none of the mice live
at this location, they are smarter than that! However, the mice
aren’t terribly smart. They live on the plane with Cartesian Cat
and at time t = 0, stick their heads above the ground, in sight
of Cartesian Cat. Each of the mice stays in sight at its location
for a specified amount of time before ducking back underground,
where Cartesian Cat can’t get it.

Cartesian Cat has a plan. At time t = 0, she’ll run straight towards a mouse, eat it instantaneously, and
then head for another mouse, repeating the sequence until all the mice are eaten. She encounters two
problems however: each time she eats a mouse her velocity reduces (due to her increased mass) by a
constant multiplicative factor, m. That is, if her velocity is v before eating a mouse, then after eating the
mouse her velocity is v ·m. Also, if she doesn’t reach a mouse before it ducks underground, she won’t
be able to eat it. But she can eat a mouse if she reaches it precisely at the time it ducks underground.

Since all cats are efficient by nature, help Cartesian Cat determine what her minimum initial velocity
must be if she hopes to eat all of the mice. Assume that she eats the mice in an optimal order.

Input

The first line of input contains a single positive integer, n (where 1 ≤ n ≤ 15), representing the number
of mice. Each of the following n lines describes a mouse given as three space-separated integers x, y,
and s. This indicates that a mouse is located at (x, y) and will duck underground at t = s seconds. The
values of x and y are in the range [−1 000, 1 000] and s is in the range [1, 10 000]. No two mice are at
the same location. The last line of input contains a single floating-point number, m, specified to two
decimal places, in the range [0.75, 0.99], representing the multiplicative factor by which the cat slows
down after eating a single mouse.

Output

Output the minimum initial velocity (in units per second) necessary for Cartesian Cat to allow her to eat
all of the mice, given that she eats them in the optimal order. Your answer should be correct within a
relative or absolute error of 10−3.

Sample Input 1 Sample Output 1

1
3 4 2
.75

2.4999999987500003

ACM-ICPC North America Qualifier 2017 Problem D: Cat and Mice 7

https://www.flickr.com/photos/127229679@N05/15134309277/

North America Qualifier 2017

Sample Input 2 Sample Output 2

2
0 100 10
0 -100 100
.80

9.999999999000002

Sample Input 3 Sample Output 3

2
0 100 10
0 -100 15
.80

23.33333333177778

ACM-ICPC North America Qualifier 2017 Problem D: Cat and Mice 8

North America Qualifier 2017

Problem E
Company Picnic

Each year, your employer hosts a company picnic. This event features a three-legged race, a race where
two runners work as a team, running side-by-side with the legs between them tied together. It is more
difficult to run like that, so teams run at a speed that is the minimum of the running speed of the two
team members. For example, if Mildred can run 4.4 meters per second and Ken can run 4.0 meters per
second, then, as a team, they will run 4.0 meters per second.

To improve company morale, all teams are chosen so they include an employee and the supervisor they
report directly to. In the organization chart below, Mildred could be on a team with Ken (running at 4.0
meters per second) or with Zack (running at 4.2 meters per second), but Mildred could not be on a team
with Barbara.

Figure E.1: Organization chart illustrating the sample input below.

Given a description of the company organizational chart, your job is to create as many teams as possible
for the upcoming race, provided each employee can only be on one team. To make the race exciting,
you want to choose the fastest teams possible, so, while forming as many teams as you can, you must
pair up team members so that the average team running speed is maximized. For example, in the chart
above, you could form four teams by pairing Mildred with Ken, Zack with Tina, Wilbur with Virgil and
Rose with Seth. However, a better solution would pair Rose with Barbara instead of Seth. This would
still give you four teams, but it would give you a greater average speed for the teams.

Input

The first line of input contains an integer n (2 ≤ n ≤ 1 000) giving the total number of employees in the
company. This is followed by n lines, each describing an employee. Each of these lines contains three
space-separated values, first the name of the employee, then a real number giving their running speed
in meters per second, and, finally, the name of their immediate supervisor in the organization chart.
The organization chart is guaranteed to form a tree, with the CEO at the root. Since the CEO does not
report to anyone, the input just gives “CEO” as their supervisor (no one’s name is CEO). For all other
employees, the supervisor is the name of another employee listed elsewhere in the input. Employee
names are all unique and consist of 1 to 12 upper- and lower-case letters (a–z), and running speeds are
all in the plausible range from 2.2 meters per second up to 5.3 meters per second. Running speeds have
at most 3 digits after the decimal point.

ACM-ICPC North America Qualifier 2017 Problem E: Company Picnic 9

North America Qualifier 2017

Output

Print the largest number of three-legged-race teams that can be formed, followed by the maximum
possible average running speed for that number of teams. The speed should be accurate to within 0.001
meters per second.

Sample Input 1 Sample Output 1

9
Barbara 3.5 CEO
Rose 5.1 Barbara
Seth 2.9 Rose
Virgil 3.8 Wilbur
Mildred 4.4 Zack
Wilbur 2.7 Barbara
Tina 3.7 Zack
Ken 4.0 Mildred
Zack 4.2 Barbara

4 3.47500000

ACM-ICPC North America Qualifier 2017 Problem E: Company Picnic 10

North America Qualifier 2017

Problem F
GlitchBot

Image by Shawn Allen

One of our delivery robots is malfunctioning! The job of the robot is
simple; it should follow a list of instructions in order to reach a target
destination. The list of instructions is originally correct to get the robot
to the target. However, something is going wrong as we upload the
instructions into the robot’s memory. During the upload, one random
instruction from the list takes on a different value than intended. Yes,
there is always a single bad instruction in the robot’s memory and it
always results in the robot arriving at an incorrect destination as it
finishes executing the list of instructions.

The robot can execute the instructions “Left”, “Right”, and “Forward”. The “Left” and “Right”
instructions do not result in spatial movement but result in a 90-degree turn in the corresponding direc-
tion. “Forward” is the only instruction that results in spatial movement, causing the robot to move one
unit in the direction it is facing. The robot always starts at the origin (0, 0) of a grid and faces north
along the positive y-axis.

Given the coordinates of the target destination and the list of instructions that the robot has in its memory,
you are to identify a correction to the instructions to help the robot reach the proper destination.

Input

The first line of the input contains the x and y integer coordinates of the target destination, where
−50 ≤ x ≤ 50 and −50 ≤ y ≤ 50. The following line contains an integer n representing the number
of instructions in the list, where 1 ≤ n ≤ 50. The remaining n lines each contain a single instruction.
These instructions may be: “Left”, “Forward”, or “Right”.

Output

Identify how to correct the robot’s instructions by printing the line number (starting at 1) of an incorrect
input instruction, followed by an instruction substitution that would make the robot reach the target
destination. If there are multiple ways to fix the instructions, report the fix that occurs for the earliest
line number in the sequence of instructions. There is always exactly one unique earliest fix.

ACM-ICPC North America Qualifier 2017 Problem F: GlitchBot 11

https://www.flickr.com/photos/shazbot/2312055256/

North America Qualifier 2017

Sample Input 1 Sample Output 1

3 2
11
Forward
Right
Forward
Forward
Left
Forward
Forward
Left
Forward
Right
Forward

8 Right

Sample Input 2 Sample Output 2

-1 1
3
Right
Left
Forward

1 Forward

ACM-ICPC North America Qualifier 2017 Problem F: GlitchBot 12

North America Qualifier 2017

Problem G
Greeting Card

Image by Varou.d

Quido plans to send a New Year greeting to his friend Hugo. He has
recently acquired access to an advanced high-precision plotter and he
is planning to print the greeting card on the plotter.

Here’s how the plotter operates. In step one, the plotter plots an in-
tricate pattern of n dots on the paper. In step two, the picture in the
greeting emerges when the plotter connects by a straight segment each
pair of dots that are exactly 2 018 length units apart.

The plotter uses a special holographic ink, which has a limited supply.
Quido wants to know the number of all plotted segments in the picture to be sure that there is enough
ink to complete the job.

Input

The first line of input contains a positive integer n specifying the number of plotted points. The following
n lines each contain a pair of space-separated integer coordinates indicating one plotted point. Each
coordinate is non-negative and less than 231. There are at most 105 points, all of them are distinct.

In this problem, all coordinates and distances are expressed in plotter length units, the length of the unit
in the x-direction and in the y-direction is the same.

Output

The output contains a single integer equal to the number of pairs of points which are exactly 2 018 length
units apart.

Sample Input 1 Sample Output 1

4
20180000 20180000
20180000 20182018
20182018 20180000
20182018 20182018

4

Sample Input 2 Sample Output 2

6
0 0
1680 1118
3360 0
5040 1118
6720 0
8400 1118

5

ACM-ICPC North America Qualifier 2017 Problem G: Greeting Card 13

https://www.flickr.com/photos/varou/6475921749/

This page is intentionally left blank.

North America Qualifier 2017

Problem H
Imperfect GPS

Photo by Aaron Parecki

Lots of runners use personal Global Positioning System (GPS)
receivers to track how many miles they run. No GPS is perfect,
though: it only records its position periodically rather than con-
tinuously, so it can miss parts of the true running path. For this
problem we’ll consider a GPS that works in the following way
when tracking a run:

• At the beginning of the run, the GPS first records the run-
ner’s starting position at time 0.

• It then records the position every t units of time.

• It always records the position at the end of the run, even if
the total running time is not a multiple of t.

The GPS assumes that the runner goes in a straight line between each consecutive pair of recorded
positions. Because of this, a GPS can underestimate the total distance run.

For example, suppose someone runs in straight lines and at constant speed between the positions on the
left side of Table 1. The time they reach each position is shown next to the position. They stopped
running at time 11. If the GPS records a position every 2 units of time, its readings would be the records
on the right side of Table 1.

Time Position Time Position
0 (0, 0) 0 (0, 0)
3 (0, 3) 2 (0, 2)
5 (−2, 5) 4 (−1, 4)
7 (0, 7) 6 (−1, 6)
9 (2, 5) 8 (1, 6)
11 (0, 3) 10 (1, 4)

11 (0, 3)

Table 1: Actual Running Path on the left, GPS readings on the right.

The total distance run is approximately 14.313708 units, while the GPS measures the distance as ap-
proximately 11.650281 units. The difference between the actual and GPS distance is approximately
2.663427 units, or approximately 18.607525% of the total run distance.

Given a sequence of positions and times for a running path, as well as the GPS recording time interval
t, calculate the percentage of the total run distance that is lost by the GPS. Your computations should
assume that the runner goes at a constant speed in a straight line between consecutive positions.

Input

The input consists of a single test case. The first line contains two integers n (2 ≤ n ≤ 100) and t
(1 ≤ t ≤ 100), where n is the total number of positions on the running path, and t is the recording time
interval of the GPS (in seconds).

ACM-ICPC North America Qualifier 2017 Problem H: Imperfect GPS 15

https://www.flickr.com/photos/aaronpk/4786725513/

North America Qualifier 2017

The next n lines contain three integers per line. The i-th line has three integers xi, yi (−106 ≤ xi, yi ≤
106), and ti (0 ≤ ti ≤ 106), giving the coordinates of the i-th position on the running path and the time
(in seconds) that position is reached. The values of ti’s are strictly increasing. The first and last positions
are the start and end of the run. Thus, t1 is always zero.

It is guaranteed that the total run distance is greater than zero.

Output

Output the percentage of the actual run distance that is lost by the GPS. The answer is considered correct
if it is within 10−5 of the correct answer.

Sample Input 1 Sample Output 1

6 2
0 0 0
0 3 3
-2 5 5
0 7 7
2 5 9
0 3 11

18.60752550117103

ACM-ICPC North America Qualifier 2017 Problem H: Imperfect GPS 16

North America Qualifier 2017

Problem I
Odd Gnome

Photo by Chris Friese

According to the legend of Wizardry and Witchcraft, gnomes live
in burrows underground, known as gnome holes. There they dig
up and eat the roots of plants, creating little heaps of earth around
gardens, causing considerable damage to them.

Mrs. W, very annoyed by the damage, has to regularly de-gnome
her garden by throwing the gnomes over the fence. It is a lot of
work to throw them one by one because there are so many. For-
tunately, the species is so devoted to their kings that each group
always follows its king no matter what. In other words, if she
were to throw just the king over the fence, all the other gnomes
in that group would leave.

So how does Mrs. W identify the king in a group of gnomes? She
knows that gnomes travel in a certain order, and the king, being
special, is always the only gnome who does not follow that order.

Here are some helpful tips about gnome groups:

• There is exactly one king in a group.

• Except for the king, gnomes arrange themselves in strictly
increasing ID order.

• The king is always the only gnome out of that order.

• The king is never the first nor the last in the group, because
kings like to hide themselves.

Help Mrs. W by finding all the kings!

Input

The input starts with an integer n, where 1 ≤ n ≤ 100, representing the number of gnome groups. Each
of the n following lines contains one group of gnomes, starting with an integer g, where 3 ≤ g ≤ 1 000,
representing the number of gnomes in that group. Following on the same line are g space-separated
integers, representing the gnome ordering. Within each group all the integers (including the king) are
unique and in the range [0, 10 000]. Excluding the king, each integer is exactly one more than the integer
preceding it.

Output

For each group, output the king’s position in the group (where the first gnome in line is number one).

ACM-ICPC North America Qualifier 2017 Problem I: Odd Gnome 17

https://www.flickr.com/photos/free-zee/11956239456/

North America Qualifier 2017

Sample Input 1 Sample Output 1

3
7 1 2 3 4 8 5 6
5 3 4 5 2 6
4 10 20 11 12

5
4
2

ACM-ICPC North America Qualifier 2017 Problem I: Odd Gnome 18

North America Qualifier 2017

Problem J
Progressive Scramble

Photo by Chilanga Cement

You are a member of a naive spy agency. For secure communication,
members of the agency use a very simple encryption algorithm – which
changes each symbol in the message ‘progressively’, i.e., based on
the symbols preceding it. The allowed symbols are space and the 26
lowercase English letters. For encryption purposes we assign them the
values 0 (for space) and 1 through 26 (for a–z). We’ll let v(s) represent
the numeric value of symbol s.

Consider a message with symbols s1, s2, . . . , sn. The encryption al-
gorithm starts by converting the first symbol s1 into its associated value u1 = v(s1). Then for each
subsequent symbol si in the message, the computed value is ui = v(si) + ui−1 — the sum of its associ-
ated value and the computed value for the previous symbol. (Note that when there is a space in the input
message, the previous scrambled letter is repeated.) This process continues until all the ui are computed.

At this point, the message is a sequence of numeric values. We need to convert it back to symbols to print
it out. We do this by taking the value ui modulo 27 (since there are 27 valid symbols), and replacing
that value with its corresponding symbol. For example, if ui = 32, then 32 mod 27 = 5, which is the
symbol ‘e’ (since v(e) = 5).

Let’s look at an example. Suppose we want to encrypt the string “my pie”.

1. First, convert each symbol si into v(si): [13, 25, 0, 16, 9, 5].

2. Next, compute each ui: [13, 38, 38, 54, 63, 68].

3. Then, use modulus on the ui: [13, 11, 11, 0, 9, 14].

4. Finally, convert these back to symbols: “mkk in”.

Create a program that takes text and encrypts it using this algorithm, and also decrypts text that has been
encrypted with this algorithm.

Input

The input to your program consists of a single integer 1 ≤ n ≤ 100 on its own line. This number is
followed by n lines, each containing the letter ‘e’ or ‘d’, a single space, and then a message made up of
lowercase letters (a–z) and spaces, continuing to the end of the line. Each message is between 1 and 80
characters long. The letters ‘d’ and ‘e’ indicate that your program decrypts or encrypts the subsequent
string, respectively.

Output

Output the result of encrypting or decrypting each message from the input on its own separate line. Note
that differences in whitespace are significant in this problem. Therefore your output must match the
correct output character-for-character, including spaces.

ACM-ICPC North America Qualifier 2017 Problem J: Progressive Scramble 19

https://www.flickr.com/photos/drbillydude/13902515516/

North America Qualifier 2017

Sample Input 1

7
e testing multiple letters rrrrrrrrrrrrr
e this particularly long sentence can test encryption
d tajbbrsjcloiuvmywwhwjqqqinauzmpuuxyllejbvv nqhfvoxlz
e my pie
d mkk in
e the quick brown fox jumps over the lazy dog
d taffwqzbmmofuqddjyvvezlatthchzzs eeqrqoosgn

Sample Output 1

tyqjsfmmzteygwhmmycwpulddvmdvmdvmdvmdv
tajbbrsjcloiuvmywwhwjqqqinauzmpuuxyllejbvv nqhfvoxlz
this particularly long sentence can test encryption
mkk in
my pie
taffwqzbmmofuqddjyvvezlatthchzzs eeqrqoosgn
the quick brown fox jumps over the lazy dog

ACM-ICPC North America Qualifier 2017 Problem J: Progressive Scramble 20

North America Qualifier 2017

Problem K
Space Probe

Photo by NASA Goddard Space Flight Center

The space probe is out of control! It’s going to start its mea-
surement sequence sometime between two given times t1 and t2
(measured in seconds), but we don’t know when. We do know
that all possible start times t ∈ [t1, t2] are equally probable.

The measurement sequence is pre-programmed and cannot be
changed. It consists of n successive measurements which have
timings m1,m2, . . . ,mn that are fixed. If t is the time that the
probe starts the measurement sequence, the first measurement oc-
curs at time t+m1, the second at time t+m2, and so on. The last measurement occurs at time t+mn.

The measurements are instantaneous events — each happens in a very short time, so we consider the
duration of any measurement to be 0 seconds.

The probe is rotating in space and cannot be controlled. Due to its rotation, there are intervals of time
when measurement devices are pointed at the Sun. If the probe were to use a measurement device while
the device is pointed at the Sun, the device’s sensors would be destroyed and the whole probe would
be lost. We do know the trajectory and the rotation of the probe and therefore there is a set of k time
intervals [b1, e1], [b2, e2], . . . , [bk, ek] during any of which no measurement may be made.

Find the probability that the probe makes all measurements successfully and is not lost due to solar
radiation damage!

Note that in this problem, all known times and time interval lengths are expressed as integers. However,
the time of the start of the measurement sequence is unknown and we suppose that it may be expressed
as any real number in the interval [t1, t2].

Input

The first input line contains four integers n, k, t1, and t2. The value n represents the number of mea-
surements, k represents the number of time intervals in which no measurement may be made, and t1
and t2 represent the time limits in which the measurement sequence can begin. The second input line
contains n integers representing the sequence m1,m2, . . . ,mn of pre-programmed time moments in
which measurements are made after the measurement sequence has begun. The sequence mi is strictly
increasing. Finally, there are k input lines which each have two integers bj and ej describing one time
interval [bj , ej] in which no measurement may be made. It’s guaranteed that bj < ej , and the intervals
do not overlap, i.e., ej−1 < bj for all j > 1.

We know that 1 ≤ n ≤ 10 000, 1 ≤ k ≤ 10 000, n · k ≤ 107, and 0 ≤ t1 < t2 ≤ 1016. All values
m1, . . . ,mn and b1, e1, . . . , bk, ek are non-negative and less than 1016. All values are separated by single
spaces.

Output

Output the probability of the probe’s survival, that is, the probability that no measurement will be made
during any of the intervals in which the Sun could damage the sensors. Your answer must be within an
absolute or relative error of 10−6 of the correct answer.

ACM-ICPC North America Qualifier 2017 Problem K: Space Probe 21

https://www.flickr.com/photos/gsfc/13960856460/

North America Qualifier 2017

Sample Input 1 Sample Output 1

2 2 10 20
1 5
12 14
15 18

0.4000000000

Sample Input 2 Sample Output 2

6 3 100 200
0 10 20 30 40 50
140 150
170 171
210 300

0.0900000000

ACM-ICPC North America Qualifier 2017 Problem K: Space Probe 22

North America Qualifier 2017

Problem L
Suspension Bridges

Photo by Bertbau, cc-sa 4.0 int

Mountain villages like to attract tourists by building suspension
bridges, such as the one depicted here in the Harz Mountains in
Germany. These bridges allow adventurously-inclined people to
seek their thrills by crossing over deep gorges. To make sure that
everyone gets just the right amount of excitement, the sag at the
deepest point of the bridge should be significant relative to the
distance the bridge covers.

Given the distance between the anchor points where the bridge is
attached, and given a desired amount of sag, compute how long each of the cables holding the suspension
bridge needs to be!

To help you solve this task, here is some background: A free-hanging suspension bridge will take on the
form of a catenary curve (catena is Latin for chain), just like a free-hanging chain between two poles.
Given the horizontal distance d between two anchor points and the desired amount s the cable is sagging
in the center, there exists a positive parameter a such that a+ s = a · cosh

(
d
2a

)
. The length of the cable

is then given by `(a, d) = 2a · sinh
(

d
2a

)
.

The functions sinh and cosh denote the hyperbolic sine and hyperbolic cosine, respectively, which are
defined as follows:

sinhx =
ex − e−x

2
coshx =

ex + e−x

2

Input

The input consists of a single test case with two space-separated integers d and s given on a single line
such that 0 < d ≤ 1 000 and 0 < s ≤ 1 000. The number d denotes the distance between the anchor
points and s is the desired sag at the center of the bridge.

Output

Output the length of cable needed to cover the distance between the anchor points to achieve the desired
sag. Your answer should be correct within an absolute error of 10−4.

Sample Input 1 Sample Output 1

400 40 410.474747252

ACM-ICPC North America Qualifier 2017 Problem L: Suspension Bridges 23

http://bit.ly/2yGa3jk

This page is intentionally left blank.

North America Qualifier 2017

Problem M
Umbral Decoding

You are planning a clever attack against a new encryption algorithm. To succeed, you need to find the
key, which is a pair of integers (p, q). We can think of the key as a point on a two-dimensional integer
lattice whose location is unknown. However, you know that (p, q) lies in the square spanned by the
lattice points (0, 0) and (n, n) for a given n, i.e. 0 ≤ p, q ≤ n.

Your attack has three stages:

1. Identify safe points and their bounds.

2. Eliminate as key candidates those points that lie in the “umbra” of any safe point.

3. Test the remaining points to see which one is the key.

Stage 1 has already been performed and you are given several safe points of the form (x, y, b) as input.

In Stage 2 you eliminate a point (p, q) if it lies in the umbra of any safe point. Point (p, q) is in the umbra
of safe point (x, y, b) if and only if

|x− p|3 + |y − q|3 ≤ b.

Your task in this problem is to count how many points will be left for testing in Stage 3 so that we have
an estimate of the amount of work left to complete the attack.

Figure M.1: Sample input safe points and umbra (red) and remaining points (blue).

Input

Input begins with two integers n, k on a single line, separated by a space, with 2 ≤ n ≤ 100 000 000,
and 0 ≤ k ≤ 100. Following that are k lines each containing three integers x, y, b separated by spaces,
representing the safe points. The values of x and y are both in the range [0, n]. The bound b lies in the
range [0, n].

Output

Output the number of points (p, q), with 0 ≤ p, q ≤ n, that do not lie in the umbra of any safe point.

ACM-ICPC North America Qualifier 2017 Problem M: Umbral Decoding 25

North America Qualifier 2017

Sample Input 1 Sample Output 1

4 1
2 2 2

16

Sample Input 2 Sample Output 2

30 2
20 20 30
25 22 30

891

ACM-ICPC North America Qualifier 2017 Problem M: Umbral Decoding 26

