2022 Pacific Northwest Division 2

Solutions

The Judges

Feb 25, 2023

2022 Pacific Northwest Division 2 Solutions 1/20

Problem

@ You are given a list of three-letter words. Is it possible to construct
three dice such that, for each word, it is possible to arrange the dice in
such a way that the top faces can form the word? All 18 possible
letters on the three dice must be distinct.

Initial Observations
o If a word has two or more identical letters, it is impossible.
@ If 19 or more distinct letters appear over all words, it is impossible.
o If fewer than 18 distinct letters appear, we can pick arbitrary unique
letters that do not appear to fill in the other faces.

o If letters o and 3 appear in the same word, they must appear on
different dice.

Problem Author: Howard Whitston 2022 Pacific Northwest Division 2 Solutions 2/20

Three Dice

@ If the faces and dice are all distinguishable, there are 18! ways to
arrange the letters.

@ The faces of a die are indistinguishable before adding letters, so we
can divide out a factor of 6!.

@ The dice are also indistinguishable before adding letters, so we can
divide out a factor of 3!.

@ This leaves us with W%!_?’! = 2858856 combinations to try.

@ We can use recursive backtracking to enumerate and try all of these,
pruning when an assignment is clearly invalid.

@ Though not necessary to solve the problem, we can recursively try
assigning the letters that have the most constraints first to prune the
search space.

€

Problem Author: Howard Whitston 2022 Pacific Northwest Division 2 Solutions 3/20

Problem

@ You are given a string of lowercase letters. In a single operation, you
take two adjacent characters and mutate both of them. Compute the
minimum number of operations needed to make the string a
palindrome.

Initial Observations
@ If the outermost characters match, neither should be changed.
@ If the outermost characters do not match, it is not always optimal to
make them match with one operation! The sample case vetted shows
this - we need more than 2 operations if we make the outermost
characters match, but we can do 2 operations by doing vetted to
gutted to guttug.

Problem Author: Nick Wu 2022 Pacific Northwest Division 2 Solutions 4/20

Alchemy

@ We can solve this with dynamic programming. We can reduce this
problem to the following - you are given a binary string where in a
single operation, you look at two adjacent indices - a 1 must be
flipped to a 0, whereas a 0 can stay as either a 0 or be changed to a 1.
Your goal is to make the string be all 1's.

@ To solve this problem, you can maintain for a state of the form (length
of prefix that is all 1's, whether the next bit has been forcibly flipped)
the minimum number of operations needed to get to that state.

@ To convert the original problem to this reduced one, construct the
binary string from left to right by looping over pairs of characters in
the original string from the outside going to the middle, adding a 1 if
the characters match and a 0 if they don't.

Problem Author: Nick Wu 2022 Pacific Northwest Division 2 Solutions 5/20

Champernowne Count

Problem

@ The nth Champernowne word is obtained by concatenating the first n
positive integers in order. Compute how many of the first n
(1 < n < 10%) Champernowne words are divisible by k (1 < k < 109).

@ n is large enough that it is not practical to store the integers using
arbitrary precision integers.

@ However, k is small, so we can maintain each Champernowne word
modulo k.

@ When transitioning from the nth Champernowne word to the
(n+ 1)th, we can multiply by 10° and add (n+ 1), where s is the
number of digits in n+ 1. This should be maintained modulo k.

@ Be careful about integer overflow, 64-bit integers suffice.

@ Challenge: Can you solve this for small k but very large n?

Problem Author: Nick Wu 2022 Pacific Northwest Division 2 Solutions 6 /20

Hunt the Wumpus

Problem

@ Generate locations for four wumpuses on a grid, then simulate playing
a game where you try to find them in the grid.

@ This problem requires carefully following the rules stipuated in the
problem. There are several things to be careful for.

@ One tricky part is making sure that the four locations of the
wumpuses are distinct. There are many ways to implement this - one
can use a set or maintain a boolean array of size 100 to see which
locations have been filled in.

o After that, carefully simulate the process to see if a location contains a
wumpus. If a location is hit, make sure to remove the wumpus from
that location.

@ Be sure to print out all the messages exactly as written.

Problem Author: Tomas Rokicki 2022 Pacific Northwest Division 2 Solutions 7/20

Color Tubes

Problem

@ You have n + 1 tubes each with the capacity to hold three balls.
There are 3n balls distributed among the tubes, three balls each of n
distinct colors. In a single move, you can take a ball from one tube
and move it on top of all the other balls in a tube that has fewer than
three balls in it. In 20n moves or fewer, get all tubes to be either
completely empty or have all three balls of some color.

@ There are many different approaches to get this to happen within 20n
moves. We'll outline one approach that fills in the left n tubes. This
solution will operate in multiple phases.

Problem Author: Zachary Friggstad 2022 Pacific Northwest Division 2 Solutions 8/20

Initialization

@ We start by emptying the rightmost tube, arbitrarily moving balls from
there into tubes to the left that have space. This takes at most three
moves.

@ We proceed by making tube 1 be monochromatic, at which point
future moves will not interact with it at all. We need to be able to
perform this in fewer than 20 moves due to the overhead we incurred.)

Making the Leftmost Tube Monochromatic

o Let the bottom ball in the leftmost tube have color c. We will move
all balls with color c into this tube.

@ If the tube is already monochromatic, we're done.

@ If the topmost ball has color ¢ and the middle one doesn't, we can
reverse the two balls as follows:

\,

Problem Author: Zachary Friggstad 2022 Pacific Northwest Division 2 Solutions 9/20

Making the Leftmost Tube Monochromatic, continued

@ Let the leftmost tube be /, the rightmost tube with balls be r, and the
empty tube be e. Move a ball from r to e, the topmost ball with color
c into e, the middle ball from [to r, the topmost ball with color ¢
from e to /, and the last ball from e back to /. This takes five
operations.

@ Now, it remains to move balls from other tubes into the leftmost tube.

@ If such a ball is not the bottom-most ball in its tube, we can remove
the incorrect balls out of tube / into e, any balls above that ball into
e, and then move that ball directly into /. Moving all balls back into
e, this takes at most seven moves to fix one ball.

@ If such a ball is the bottom-most ball in its tube, we can reverse the
entire tube by moving all balls into tube e, at which point we can
apply the above logic to move balls out of / until we can take the
(now topmost ball) from e and move it into /. This takes at most
eight moves.

Problem Author: Zachary Friggstad 2022 Pacific Northwest Division 2 Solutions 10 /20

Food Processor

@ You have n different blades. Blade i can cut pieces of size at most m;,
cutting them in half in h; seconds. Blades reduce the size at an
exponential rate. Compute the minimum number of seconds needed to
convert food that is originally size t to size s.

@ For a given piece size, we want to use the blade with the minimal h;
rate. We can ignore blades where m; < s or m; > t.

@ We need to be able to solve the equation t - 0.5% = s for x. Taking
: By lle[2
logarithms, we can show that x = %25)
@ We need to reevaluate the best blade for all m; values in [s, t]. We
can do this by maintaining the blades sorted by their m; values. It is

too slow to enumerate all eligible blades for each check.

Problem Author: Andy Nguyen 2022 Pacific Northwest Division 2 Solutions 11/20

Fading Wind
Problem
@ Simulate a paper airplane flying with a fading wind.

@ This problem requires carefully following the rules stipulated in the
problem. It should suffice to translate the rules directly into code.

@ The easiest way to compute | 75| is to use integer division. In

languages like C++ and Java, x / 10 when x is a positive integer will
automatically give the result rounded down. In Python 3, x // 10
will do the same.

\.

Problem Author: Nick Wu 2022 Pacific Northwest Division 2 Solutions 12 /20

Creative Accounting

Problem

@ You are given an array of n integers. Your goal is to partition the array
into subarrays of size k (except for possibly the first and last subarray)
such that as many subarrays as possible have positive sum. Though
n < 3-10% k can only take on 103 distinct values.

Initial Observations

@ Because k can only take on a small number of values relative to n,
this hints at brute-forcing all possible valid values of k.

@ If we precompute prefix sums - specifically (i) is the sum of the first i
integers in the array for 0 </ < n, we can compute the sum of all
elements in an arbitrary subarray in O(1) time. Specifically, the sum
of the subarray starting at index a and ending at index b is exactly
equal to f(b+ 1) — f(a).

Problem Author: Bowen Yu 2022 Pacific Northwest Division 2 Solutions 13/20

Creative Accounting

Solution
@ For a fixed starting point and a subarray size k, we can compute the
number of subarrays with positive sum in O () time.
@ Checking all k possible starting points for a subarray of size k
therefore takes O(n) time.

@ Checking all possible values of k, this algorithm therefore runs in
O(nk) time.

.

Problem Author: Bowen Yu 2022 Pacific Northwest Division 2 Solutions 14 /20

| Could Have Won

Problem

@ Alice and Bob are playing rock-paper-scissors - they each earn points
with the first to earning k points winning a game, and points resetting
to zero after. For what values of k does Alice win more games than
Bob?

@ Because the number of total points won by both Alice and Bob is at
most 2 - 103, we can brute force all values of k up to the total number
of points earned.

@ We can directly simulate the result for a fixed value of k by

maintaining the current count of points earned by both individuals as
well as the number of games won by both individuals.

Problem Author: Jaehyun Park 2022 Pacific Northwest Division 2 Solutions 15 /20

Problem

@ The sun and the moon align for an eclipse occasionally. It was ds years
ago when the sun was last in the right place, and d,,, years ago when
the moon was last in the right place. The sun is in the right place
once every ys years, and the moon is in the right place once every y,
years. When will the next eclipse happen?

@ We are guaranteed that an eclipse will happen in the next 5000 years.

@ Therefore, we can check the years starting from one year in the future
and check if the sun and moon will be in the right place - y is a valid
year for an eclipse if (y + dy,) is divisible by yn,, and (y + ds) is
divisible by ys.

@ There is a faster solution using the Chinese Remainder Theorem, but
this was not required to solve the problem.

.

Problem Author: Nick Wu 2022 Pacific Northwest Division 2 Solutions 16 /20

Chocolate Chip Fabrication

Problem

@ You want to make a chocolate chip cookie. In a given turn, you add
some cookie squares to your existing cookie. A given square can only
be added if it is on the boundary of the cookie or if some adjacent
square is not yet filled with a cookie. Compute the minimum number
of turns needed to construct the chocolate chip cookie.

Initial Observations

o It seems difficult to know which squares we can fill in first.

@ However, if we consider the last turn, we know which squares cannot
be filled in on the last turn - any square which is surrounded by cookie
on all four sides must be filled in prior to the last turn.

@ Therefore, we can consider the reverse process of “eating" the cookie
in the minimum number of turns, where a cookie square can be eaten
if it is on the boundary or some adjacent square is empty.

.

Problem Author: Travis Meade 2022 Pacific Northwest Division 2 Solutions 17 /20

Chocolate Chip Fabrication

@ We can solve this other problem using breadth-first search. All squares
that are on the boundary or have some adjacent square empty are
initialized to a turn counter of 1, and all other squares are set to a
turn counter of infinity.

@ We maintain a queue of squares we are processing, initialized with the
squares that have a turn counter of 1.

@ Remove a square from the queue, and if any adjacent squares have a
turn counter of infinity, update the turn counter to 1 more than the
current turn counter, and append that square to the queue.

@ The answer is the maximum turn counter over all squares.

.

Problem Author: Travis Meade 2022 Pacific Northwest Division 2 Solutions 18 /20

Distinct Parity Excess

Problem

@ Define the prime parity of an integer k to be the number of distinct
primes that divide k. For multiple queries [a, b] compute the difference
between the number of integers in [a, b] with even prime parity and
the number of integers in [a, b] with odd prime parity.

@ Start by using the sieve of Eratosthenes to compute all primes.

@ For each prime p, loop over all its multiples and update the prime
parity for all such multiplies with respect to p.

o Let (/) be the desired answer for the range [0, /] - f(i + 1) is one
larger than (i) if i + 1 has even prime parity, and one smaller
otherwise.

@ The answer to a query [a, b] is therefore f(b) — f(a —1).

Problem Author: Bob Logan 2022 Pacific Northwest Division 2 Solutions 19 /20

Restaurant Opening

@ Given a grid of integers g where the cost of location (/,}) is

n m
Z ngy(“ — x|+ |j — y|), compute the minimum possible cost over
x=1y=1
all locations in the grid.

@ The grid is small, so we can brute force all locations.

@ To compute the cost for a given location, we can have two nested
loops to loop over all locations in the grid to accumulate the costs
that the various grid locations contribute.

Problem Author: Nick Wu 2022 Pacific Northwest Division 2 Solutions 20 /20

