2022 Pacific Northwest Division 1

Solutions

The Judges

Feb 25, 2023

2022 Pacific Northwest Division 1 Solutions 1/24

Problem

@ You are given a list of three-letter words. Is it possible to construct
three dice such that, for each word, it is possible to arrange the dice in
such a way that the top faces can form the word? All 18 possible
letters on the three dice must be distinct.

Initial Observations
o If a word has two or more identical letters, it is impossible.
@ If 19 or more distinct letters appear over all words, it is impossible.
o If fewer than 18 distinct letters appear, we can pick arbitrary unique
letters that do not appear to fill in the other faces.

o If letters o and 3 appear in the same word, they must appear on
different dice.

Problem Author: Howard Whitston 2022 Pacific Northwest Division 1 Solutions 2/24

Three Dice

@ If the faces and dice are all distinguishable, there are 18! ways to
arrange the letters.

@ The faces of a die are indistinguishable before adding letters, so we
can divide out a factor of 6!.

@ The dice are also indistinguishable before adding letters, so we can
divide out a factor of 3!.

@ This leaves us with W%!_?’! = 2858856 combinations to try.

@ We can use recursive backtracking to enumerate and try all of these,
pruning when an assignment is clearly invalid.

@ Though not necessary to solve the problem, we can recursively try
assigning the letters that have the most constraints first to prune the
search space.

€

Problem Author: Howard Whitston 2022 Pacific Northwest Division 1 Solutions 3/24

Problem

@ You are given a string of lowercase letters. In a single operation, you
take two adjacent characters and mutate both of them. Compute the
minimum number of operations needed to make the string a
palindrome.

Initial Observations
@ If the outermost characters match, neither should be changed.
@ If the outermost characters do not match, it is not always optimal to
make them match with one operation! The sample case vetted shows
this - we need more than 2 operations if we make the outermost
characters match, but we can do 2 operations by doing vetted to
gutted to guttug.

Problem Author: Nick Wu 2022 Pacific Northwest Division 1 Solutions 4/24

Alchemy

@ We can solve this with dynamic programming. We can reduce this
problem to the following - you are given a binary string where in a
single operation, you look at two adjacent indices - a 1 must be
flipped to a 0, whereas a 0 can stay as either a 0 or be changed to a 1.
Your goal is to make the string be all 1's.

@ To solve this problem, you can maintain for a state of the form (length
of prefix that is all 1's, whether the next bit has been forcibly flipped)
the minimum number of operations needed to get to that state.

@ To convert the original problem to this reduced one, construct the
binary string from left to right by looping over pairs of characters in
the original string from the outside going to the middle, adding a 1 if
the characters match and a 0 if they don't.

Problem Author: Nick Wu 2022 Pacific Northwest Division 1 Solutions 5/24

Champernowne Count

Problem

@ The nth Champernowne word is obtained by concatenating the first n
positive integers in order. Compute how many of the first n
(1 < n < 10%) Champernowne words are divisible by k (1 < k < 109).

@ n is large enough that it is not practical to store the integers using
arbitrary precision integers.

@ However, k is small, so we can maintain each Champernowne word
modulo k.

@ When transitioning from the nth Champernowne word to the
(n+ 1)th, we can multiply by 10° and add (n+ 1), where s is the
number of digits in n+ 1. This should be maintained modulo k.

@ Be careful about integer overflow, 64-bit integers suffice.

@ Challenge: Can you solve this for small k but very large n?

Problem Author: Nick Wu 2022 Pacific Northwest Division 1 Solutions 6 /24

Triangle Containment

Problem
@ You are given a bunch of weighted points (x, y) in the plane. For each
point, its value is defined as the sum of the weights of the other
weighted points strictly inside the triangle defined by it, (0,0), and
(b,0). Compute the value of every point.

Initial Observations

@ nis too large to directly check, for each point, which points are
strictly inside the induced triangle - it is possible to construct O(n?)
pairs where one point is inside the induced triangle by another point.

@ If we sort the points by their directed angle 8; around the origin, note
that in order for point / to have point j inside its triangle, 6; < 6;.

@ By similar logic, if we sort the points by their directed angle «; around
(b,0), we get a similar relation.

v

Problem Author: Zachary Friggstad 2022 Pacific Northwest Division 1 Solutions 7/24

Triangle Containment

@ Sort the point in reverse order by angle around (b, 0).

@ Looping over all points in this given order, we see that the points
inside the current triangle must precede the current point. However,
those points must also have 6 smaller than the current point.

@ We can maintain a segment tree keyed on index in the 6; sort order.
When we see point j, report the sum of all points seen so far with
smaller 6, and then activate that point in the segment tree.

@ Due to the large numbers, exact integer arithmetic must be used when
sorting points by angle. This can be done by using cross products.

Problem Author: Zachary Friggstad 2022 Pacific Northwest Division 1 Solutions 8/24

Color Tubes

Problem

@ You have n + 1 tubes each with the capacity to hold three balls.
There are 3n balls distributed among the tubes, three balls each of n
distinct colors. In a single move, you can take a ball from one tube
and move it on top of all the other balls in a tube that has fewer than
three balls in it. In 20n moves or fewer, get all tubes to be either
completely empty or have all three balls of some color.

@ There are many different approaches to get this to happen within 20n
moves. We'll outline one approach that fills in the left n tubes. This
solution will operate in multiple phases.

Problem Author: Zachary Friggstad 2022 Pacific Northwest Division 1 Solutions 9/24

Initialization

@ We start by emptying the rightmost tube, arbitrarily moving balls from
there into tubes to the left that have space. This takes at most three
moves.

@ We proceed by making tube 1 be monochromatic, at which point
future moves will not interact with it at all. We need to be able to
perform this in fewer than 20 moves due to the overhead we incurred.)

Making the Leftmost Tube Monochromatic

o Let the bottom ball in the leftmost tube have color c. We will move
all balls with color c into this tube.

@ If the tube is already monochromatic, we're done.

@ If the topmost ball has color ¢ and the middle one doesn't, we can
reverse the two balls as follows:

\,

Problem Author: Zachary Friggstad 2022 Pacific Northwest Division 1 Solutions 10 /24

Making the Leftmost Tube Monochromatic, continued

@ Let the leftmost tube be /, the rightmost tube with balls be r, and the
empty tube be e. Move a ball from r to e, the topmost ball with color
c into e, the middle ball from [to r, the topmost ball with color ¢
from e to /, and the last ball from e back to /. This takes five
operations.

@ Now, it remains to move balls from other tubes into the leftmost tube.

@ If such a ball is not the bottom-most ball in its tube, we can remove
the incorrect balls out of tube / into e, any balls above that ball into
e, and then move that ball directly into /. Moving all balls back into
e, this takes at most seven moves to fix one ball.

@ If such a ball is the bottom-most ball in its tube, we can reverse the
entire tube by moving all balls into tube e, at which point we can
apply the above logic to move balls out of / until we can take the
(now topmost ball) from e and move it into /. This takes at most
eight moves.

Problem Author: Zachary Friggstad 2022 Pacific Northwest Division 1 Solutions 11 /24

Food Processor

@ You have n different blades. Blade i can cut pieces of size at most m;,
cutting them in half in h; seconds. Blades reduce the size at an
exponential rate. Compute the minimum number of seconds needed to
convert food that is originally size t to size s.

@ For a given piece size, we want to use the blade with the minimal h;
rate. We can ignore blades where m; < s or m; > t.

@ We need to be able to solve the equation t - 0.5% = s for x. Taking
: By lle[2
logarithms, we can show that x = %25)
@ We need to reevaluate the best blade for all m; values in [s, t]. We
can do this by maintaining the blades sorted by their m; values. It is

too slow to enumerate all eligible blades for each check.

Problem Author: Andy Nguyen 2022 Pacific Northwest Division 1 Solutions 12 /24

Problem

@ Count the number of sets of n positive integers each less than or equal
to m where the bitwise AND of all the integers in the set has at least
k bits turned on.

Solution (High-Level)

@ The number of subsets is far too large to enumerate, even with
backtracking.

@ m is small though, so we could enumerate all possible bitwise ANDs
that can result.

@ We need to use the principle of inclusion-exclusion to handle
overcounting.

Problem Author: Arnav Sastry 2022 Pacific Northwest Division 1 Solutions 13 /24

Digits of Unity

Solution (Details)

@ We need to precompute factorials and inverse factorials modulo
998244353. We can do the factorials in linear time directly. We can
compute one inverse factorial by leveraging Fermat's Little Theorem,

then compute the rest by observing Il, = (I."ill)!.

@ We can also precompute, for an integer x, the number of ways to
select a subset of y elements from a set of x elements where
k<y<x.

@ We can then enumerate all possible bitwise ANDs, counting the
number of integers less than or equal to m that have all those bits
turned on.

A

Problem Author: Arnav Sastry 2022 Pacific Northwest Division 1 Solutions 14 /24

Branch Manager

Problem

@ In a rooted tree, people navigate through the tree by always traveling
to the descendant with the lowest ID. n people start at the root and
wish to get to specific destinations, traveling through the tree in order.
Before each person starts traveling, you can permanently delete some
edges from the tree. Compute the index of the first person who
cannot make it home.)

Initial Observations
@ Use the Euler tour technique to represent the tree. Specifically, DFS
through the tree in sorted order of children. Let s, be the time when
we first see vertex v in the DFS, and let e, be the time when we
return from vertex v in the DFS.
@ We are therefore looking for the first vertex v where there exists a
vertex u appearing before v in the destination order list where e, < s,,.

Problem Author: Lewin Gan 2022 Pacific Northwest Division 1 Solutions 15 /24

Branch Manager

o If we compute the Euler tour of the tree, we can simply loop over the
destination vertices in order, track the maximum s, we have seen, and
see when some e, is less than the maximum e, seen prior.

@ Note that it is not strictly necessary to compute the Euler tour
beforehand and then loop over the destination vertices in order. We
can perform a preorder traversal of the tree. Prior to returning from
the recursive call from a vertex v, we can visit any vertex that is in the
call stack of the DFS, so we can loop over destination vertices until we
see one we cannot visit.

V

Problem Author: Lewin Gan 2022 Pacific Northwest Division 1 Solutions 16 /24

Counting Satellites

o Find a string of length at most 5 x 103 that contains k
(1 < k < 10%8) subsequences of the word SATELLITE.

v

@ We show one solution that generates strings using around 4 x 103
characters at most. It is possible to do better.

@ For convenience, we will actually construct k subsequences of the
reverse, ETILLETAS. We can reverse the string to get our desired
answer. We do this because both ‘S* and ‘A" appear exactly once in
the string. After reading through the full solution, note that we can do
better by not giving ‘S’ special treatment.

V.

Problem Author: Nick Wu 2022 Pacific Northwest Division 1 Solutions 17 /24

Counting Satellites

Solution, continued

o Create eight blocks - block i will consist of 2/~! copies of each letter
in ‘ETILLET" in order. The eight blocks will be separated by various
numbers of A's. The last character in the string will be S.

o After block 8, each instance of the letter A will contribute
8711794301899425 ~ 8 x 10%° subsequences of the form ETILLETA.
In general, we can show that each block will be separated by at most
300 A's.

@ The other letters alone comprise roughly 1800 characters, and
1800 + 8 x 300 easily fits in the given bound.

Problem Author: Nick Wu 2022 Pacific Northwest Division 1 Solutions 18 /24

Problem

@ The sun and the moon align for an eclipse occasionally. It was ds years
ago when the sun was last in the right place, and d,,, years ago when
the moon was last in the right place. The sun is in the right place
once every ys years, and the moon is in the right place once every y,
years. When will the next eclipse happen?

@ We are guaranteed that an eclipse will happen in the next 5000 years.

@ Therefore, we can check the years starting from one year in the future
and check if the sun and moon will be in the right place - y is a valid
year for an eclipse if (y + dy,) is divisible by yn,, and (y + ds) is
divisible by ys.

@ There is a faster solution using the Chinese Remainder Theorem, but
this was not required to solve the problem.

.

Problem Author: Nick Wu 2022 Pacific Northwest Division 1 Solutions 19 /24

Advertising ICPC

Problem

@ A grid of letters is advertising ICPC if a 2 x 2 subgrid spells out ICPC.
Count the number of ways to fill in missing letters in the grid such
that the grid is advertising ICPC.

@ Even though the grid is small, there are too many ways to fill in blank
grid squares for recursive backtracking to work.

@ However, if we fill in the squares in row-major order, we note that the
only letters which matter are the previous ¢ + 1 letters, and whether a
2 x 2 subgrid spells out ICPC.

@ There are 3! ways for the previous c + 1 letters to be arranged, and
we can use dynamic programming to maintain the transitions as we
add letters.

o Challenge: Can you solve it in O (2min(r:<))?

Problem Author: Nick Wu 2022 Pacific Northwest Division 1 Solutions 20 /24

Exponent Exchange

Problem
@ Alice has x dollars and Bob has bP — x dollars. In one operation, one
person can give b* dollars to the other. What is the minimum number
of operations k such that, if both Alice and Bob and permitted to
perform k operations, one person ends up with bP dollars?

Initial Observations

@ If the number of dollars Alice and Bob each have is divisible by b, then
there is no reason for either person to give b° dollars to the other.

@ In general, if the number of dollars both people is divisible by b*, the
only moves they should make should involve amounts greater than or
equal to b*.

@ It also doesn't make sense for Alice and Bob to both give the other b*

dollars at any point.)

21/24

Problem Author: Lewin Gan 2022 Pacific Northwest Division 1 Solutions

Exponent Exchange

@ We iterate on x from 0 to p — 1, at that stage we assume that Alice
and Bob will exactly operate using b* dollars and both Alice and Bob
have dollars divisible by b*.

@ We use dynamic programming. The state we maintain is whether
Alice has more or less money relative to her starting amount, and the
number of operations she has performed. We map this state to the
mininum number of operations that Bob needs to perform.

@ Naively, there are too many states to maintain. To prune the number
of states, note that as the number of operations Alice performs
increases, the number of operations Bob does must decrease. Pruning
states that are in violation of this makes this run in time.

.

Problem Author: Lewin Gan 2022 Pacific Northwest Division 1 Solutions 22 /24

o Given an infinite chessboard with n (1 < n < 103) rooks, quickly
answer queries of the form - can a knight hop from square (x1,y1) to

(x2, 2)?

Initial Observations

@ If a chessboard has dimensions at least 4 x 4, a knight can get from
any square to any other square.

o If a chessboard has at least two rows, then within a given row, if a
knight can visit some square, it can visit the square four squares to its
left or right.

@ n rooks divide the chessboard into O(n?) sub-chessboards.

Problem Author: Bowen Yu 2022 Pacific Northwest Division 1 Solutions 23 /24

Lone Knight

@ Within a sub-chessboard with at least two rows and two columns,
squares are indistinguishable when their rows and columns are
equivalent modulo 4.

@ We can use a disjoint set data structure to maintain the connected
components after reducing by parity.

@ To handle the special case where a sub-chessboard has exactly one
row or column, two squares are in the same component only if that
component has size strictly greater than 1.

A

Problem Author: Bowen Yu 2022 Pacific Northwest Division 1 Solutions 24 /24

