NWERC 2022

Solutions presentation

November 27, 2022

The NWERC 2022 Jury

- Bjarki Ágúst Guðmundsson
 Google
- Jorke de Vlas
 Utrecht University

Ludo Pulles

Centrum Wiskunde & Informatica Amsterdam

- Maarten Sijm
 CHipCie (Delft University of Technology)
- Markus Himmel
 CAS Software, Karlsruhe
- Michael Zündorf Karlsruhe Institute of Technology
- Nils Gustafsson

KTH Royal Institute of Technology

- Paul Wild
 FAU Erlangen-Nürnberg
- Peter Kluit
 Delft University of Technology
- Ragnar Groot Koerkamp ETH Zurich
- Reinier Schmiermann
 Utrecht University
- Timon Knigge
 ETH Zurich
- Wendy Yi
 Karlsruhe Institute of Technology

Big thanks to our test solvers

- Bernhard Linn Hilmarsson
 ETH Zurich
- Bergur Snorrason
 University of Iceland
- Federico Glaudo
 ETH Zurich
- Henri Devillez

Université Catholique de Louvain

Joey Haas

Sioux Technologies

Problem

A group of players takes turns counting through the integers from c to d, except that

- each multiple of a is replaced by Fizz
- each multiple of b is replaced by Buzz
- each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

A STREET STREET

Problem

A group of players takes turns counting through the integers from c to d, except that

- each multiple of a is replaced by Fizz
- each multiple of b is replaced by Buzz
- each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Solution

• Find all the positions with Fizz (or FizzBuzz) and all the positions with Buzz (or FizzBuzz), then solve independently.

Problem

A group of players takes turns counting through the integers from c to d, except that

- each multiple of a is replaced by Fizz
- each multiple of b is replaced by Buzz
- each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Solution

1

- Find all the positions with Fizz (or FizzBuzz) and all the positions with Buzz (or FizzBuzz), then solve independently.
- Three cases depending on the number of occurrences:
 - 2 or more \longrightarrow output the difference between the first two occurrences.
 - \rightsquigarrow output the position of that single occurrence.
 - $0 \qquad \qquad \rightsquigarrow \quad \text{output some number past the end of the range}.$

Problem

A group of players takes turns counting through the integers from c to d, except that

- each multiple of a is replaced by Fizz
- each multiple of b is replaced by Buzz
- each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Pitfalls

Exceptions in Java are not fast enough...

```
try { int v = Integer.parseInt(s); } catch (NumberFormatException e) { ... }
```

Contraction of the second s

Problem

A group of players takes turns counting through the integers from c to d, except that

- each multiple of a is replaced by Fizz
- each multiple of b is replaced by Buzz
- each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Pitfalls

Exceptions in Java are not fast enough...

```
try { int v = Integer.parseInt(s); } catch (NumberFormatException e) { ... }
```

Statistics: 268 submissions, 136 accepted, 5 unknown

ارمم أحدين برجاد مراج وجبوك وليرحم لأتكافي زر

Problem

Given:

- the density d_a of air and d_w of water,
- the radius *r* and height *h* of a cylindrical container.

To which height should the cylinder be filled with water to minimise the height of the centre of mass?

Given:

- the density d_a of air and d_w of water,
- the radius *r* and height *h* of a cylindrical container.

To which height should the cylinder be filled with water to minimise the height of the centre of mass?

والمرجعين والمرجعة

والالة أمقسوليون إرام المط

أمعم المسمويين واستنبعت أواج يحجب اولجو كالأفلاقي زوت

Observations

• The radius *r* is irrelevant.

- The radius *r* is irrelevant.
- The result can be found using ternary search.

وهفالمستوير وأفراهم

- The radius *r* is irrelevant.
- The result can be found using ternary search.

Solution

- Given the height h_w , calculate $h_a = h h_w$.
- The centre of mass of the water is at height $c_w = \frac{h_w}{2}$.

والالا أوالمستلوجين أوالم المطا

• The centre of mass of the air is at height $c_a = h - \frac{h_a}{2}$.

- The radius *r* is irrelevant.
- The result can be found using ternary search.

Solution

- Given the height h_w , calculate $h_a = h h_w$.
- The centre of mass of the water is at height $c_w = \frac{h_w}{2}$.
- The centre of mass of the air is at height $c_a = h \frac{h_a}{2}$.
- The height of the combined centre of mass is the weighted average

ويرجيهم والبريين

والاله أنشيب ليريد إرام المرا

- The radius *r* is irrelevant.
- The result can be found using ternary search.

Solution

- Given the height h_w , calculate $h_a = h h_w$.
- The centre of mass of the water is at height $c_w = \frac{h_w}{2}$.
- The centre of mass of the air is at height $c_a = h \frac{h_a}{2}$.
- The height of the combined centre of mass is the weighted average:

$$\frac{c_a \cdot d_a \cdot h_a + c_w \cdot d_w \cdot h_w}{h_a \cdot d_a + h_w \cdot d_w}$$

- ul I - un a

أراده أرباهم وارتبا الرواي مط

• Can also be found by differentiating a nasty expression (left as an exercise for the reader).

- The radius *r* is irrelevant.
- The result can be found using ternary search.

Solution

- Given the height h_w , calculate $h_a = h h_w$.
- The centre of mass of the water is at height $c_w = \frac{h_w}{2}$.
- The centre of mass of the air is at height $c_a = h \frac{h_a}{2}$.
- The height of the combined centre of mass is the weighted average:

$$\frac{c_a \cdot d_a \cdot h_a + c_w \cdot d_w \cdot h_w}{h_a \cdot d_a + h_w \cdot d_w}$$

Carl di Carlo di Carlo

والاله أوالمسوا ويروا الرام المط

• Can also be found by differentiating a nasty expression (left as an exercise for the reader).

Statistics: 154 submissions, 100 accepted, 22 unknown

C: Circular Caramel Cookie

Problem Author: Maarten Sijm

Problem

Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

C: Circular Caramel Cookie

Problem Author: Maarten Sijm

Problem

Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

Problem

Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

Solution

• For a fixed radius r, we can determine the number of whole unit squares that fit in the circle.

Problem

Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

Solution

- For a fixed radius r, we can determine the number of whole unit squares that fit in the circle.
- Determine how many squares fit in each column using the Pythagorean Theorem. $(\mathcal{O}(\sqrt{s}))$

Problem

Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

Solution

- For a fixed radius r, we can determine the number of whole unit squares that fit in the circle.
- Determine how many squares fit in each column using the Pythagorean Theorem. $(\mathcal{O}(\sqrt{s}))$
- Use binary search to find the solution. Total time: $\mathcal{O}(\log s \cdot \sqrt{s})$.

- I the shart trade of a start - a start the last table

Problem

Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

Challenge

It is possible in $\mathcal{O}(\sqrt{s})$ as well.

Problem

Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

Challenge

It is possible in $\mathcal{O}(\sqrt{s})$ as well.

Statistics: 298 submissions, 89 accepted, 49 unknown

Problem

Find the shortest path from the north-west to the south-east on a map of Delft with round towers and square buildings.

Find the shortest path from the north-west to the south-east on a map of Delft with round towers and square buildings.

Observation

Not all points on the map need to be checked:

الاحاط بهاره تهجيه بالجنيد بالطلابات أعلياك سن

Solution 1: Dijkstra

- Turn the map into a graph,
 - straight edges are 10 m, and
 - round edges are 5π m.

وأكارها حطريها وتهرجوا والجني بالاستها بالدارة الالبا المست

Solution 1: Dijkstra

- Turn the map into a graph,
 - straight edges are 10 m, and
 - round edges are 5π m.
- Running Dijkstra takes $\mathcal{O}(n \log n)$ time $(n = w \cdot h)$.

Solution 1: Dijkstra

- Turn the map into a graph,
 - straight edges are 10 m, and
 - round edges are 5π m.
- Running Dijkstra takes $\mathcal{O}(n \log n)$ time $(n = w \cdot h)$.

Solution 2: Dynamic Programming

• For every blue vertex (left-to-right, then top-to-bottom), take the minimum between

ي مناطقية بالرواح الما المريد .

أنا الماسط بهوا والهوين

- going straight across (right or down) and
- going across a corner (right-and-down or down-and-right).

Solution 1: Dijkstra

- Turn the map into a graph,
 - straight edges are 10 m, and
 - round edges are 5π m.
- Running Dijkstra takes $\mathcal{O}(n \log n)$ time $(n = w \cdot h)$.

Solution 2: Dynamic Programming

- For every blue vertex (left-to-right, then top-to-bottom), take the minimum between

ي ماليلية بار أوليا است.

أنا الماسط بهيا والجريد

- going straight across (right or down) and
- going across a corner (right-and-down or down-and-right).
- This takes $\mathcal{O}(n)$ time $(n = w \cdot h)$.

Problem

Find the shortest path from the north-west to the south-east on a map of Delft with round towers and square buildings.

Problem

Find the shortest path from the north-west to the south-east on a map of Delft with round towers and square buildings.

Problem

Find the shortest path from the north-west to the south-east on a map of Delft with round towers and square buildings.

Statistics: 215 submissions, 85 accepted, 53 unknown

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Observations

• Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is a tree.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Observations

- Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is a tree.
- The exact shape of this tree does not matter, only the number of vertices in each layer.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Observations

- Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is a tree.
- The exact shape of this tree does not matter, only the number of vertices in each layer.
- Represent the graph as a list (a_0, a_1, \ldots, a_k) where a_i is the number of vertices in layer i
Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Observations

- Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is a tree.
- The exact shape of this tree does not matter, only the number of vertices in each layer.
- Represent the graph as a list (a_0, a_1, \ldots, a_k) where a_i is the number of vertices in layer i

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Observations

- Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is a tree.
- The exact shape of this tree does not matter, only the number of vertices in each layer.
- Represent the graph as a list (a₀, a₁,..., a_k) where a_i is the number of vertices in layer i, satisfying:
 - There is only 1 vertex at the root layer, so $a_0 = 1$.
 - There can only be vertices at layer x if there are some at layer x 1, so for every i, $a_i \ge 1$.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Solution

• The graph can be represented as a list (a_0, a_1, \ldots, a_k) where a_i is the number of vertices in layer *i*.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

- The graph can be represented as a list (a_0, a_1, \ldots, a_k) where a_i is the number of vertices in layer *i*.
- Given such a list, construct a graph: vertex 1 is the root, and vertices at layer *i* have a single vertex at layer *i* − 1 as parent.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

- The graph can be represented as a list (a_0, a_1, \ldots, a_k) where a_i is the number of vertices in layer *i*.
- Given such a list, construct a graph: vertex 1 is the root, and vertices at layer *i* have a single vertex at layer *i* − 1 as parent.
- The total number of vertices is $a_0 + a_1 + \ldots + a_k$.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

- The graph can be represented as a list (a_0, a_1, \ldots, a_k) where a_i is the number of vertices in layer *i*.
- Given such a list, construct a graph: vertex 1 is the root, and vertices at layer *i* have a single vertex at layer *i* − 1 as parent.
- The total number of vertices is $a_0 + a_1 + \ldots + a_k$.
- The optimal time for a vertex at layer *i* is *i*, so the average optimal time is $\frac{0 \cdot a_0 + 1 \cdot a_1 + \dots + k \cdot a_k}{a_0 + a_1 + \dots + a_k}$

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

- The graph can be represented as a list (a_0, a_1, \ldots, a_k) where a_i is the number of vertices in layer *i*.
- Given such a list, construct a graph: vertex 1 is the root, and vertices at layer *i* have a single vertex at layer *i* − 1 as parent.
- The total number of vertices is $a_0 + a_1 + \ldots + a_k$.
- The optimal time for a vertex at layer *i* is *i*, so the average optimal time is $\frac{0 \cdot a_0 + 1 \cdot a_1 + \dots + k \cdot a_k}{a_0 + a_1 + \dots + a_k}$
- We consider two cases: either $\frac{a}{b} < 1$ or $\frac{a}{b} \geq 1$.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Solution

Case 1: $\frac{a}{b} < 1$.

• If there is a vertex with optimal time at least 2, then the average optimal time is at least 1. Thus, such vertices cannot exist.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Solution

Case 1: $\frac{a}{b} < 1$.

- If there is a vertex with optimal time at least 2, then the average optimal time is at least 1. Thus, such vertices cannot exist.
- The average optimal time is now $\frac{a_1}{1+a_1}$.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Solution

Case 1: $\frac{a}{b} < 1$.

- If there is a vertex with optimal time at least 2, then the average optimal time is at least 1. Thus, such vertices cannot exist.
- The average optimal time is now $\frac{a_1}{1+a_1}$.
- If a = b 1, we solve the problem with the list (1, a). Otherwise, the answer is impossible.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Solution

Case 2: $\frac{a}{b} \ge 1$. Define k as $\lfloor \frac{a}{b} \rfloor$.

• Consider a list of length 2k + 1 where every a_i is 1 except for a_k . We set a_k to a value such that $a_k > 2k + 1$ and the total number of vertices is divisible by b, i.e. $n = m \cdot b$.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Solution

Case 2: $\frac{a}{b} \ge 1$. Define k as $\lfloor \frac{a}{b} \rfloor$.

- Consider a list of length 2k + 1 where every a_i is 1 except for a_k . We set a_k to a value such that $a_k > 2k + 1$ and the total number of vertices is divisible by b, i.e. $n = m \cdot b$.
- The average optimal time is $k \leq \frac{a}{b}$: all the ones cancel each other out.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Solution

Case 2: $\frac{a}{b} \ge 1$. Define k as $\lfloor \frac{a}{b} \rfloor$.

- Consider a list of length 2k + 1 where every a_i is 1 except for a_k . We set a_k to a value such that $a_k > 2k + 1$ and the total number of vertices is divisible by b, i.e. $n = m \cdot b$.
- The average optimal time is $k \leq \frac{a}{b}$: all the ones cancel each other out.
- Moving a vertex one layer up increases the average by ¹/_{nb}. Moving (^a/_b − k) · nb vertices increases it to ^a/_b.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Solution

Case 2: $\frac{a}{b} \ge 1$. Define k as $\lfloor \frac{a}{b} \rfloor$.

- Consider a list of length 2k + 1 where every a_i is 1 except for a_k . We set a_k to a value such that $a_k > 2k + 1$ and the total number of vertices is divisible by b, i.e. $n = m \cdot b$.
- The average optimal time is $k \leq \frac{a}{b}$: all the ones cancel each other out.
- Moving a vertex one layer up increases the average by ¹/_{nb}. Moving (^a/_b − k) · nb vertices increases it to ^a/_b.
- Such movements are possible: over half of the vertices is at layer k, so moving those to layer k + 2 increases the average by 1, which is already too much.

Construct a graph such that the average optimal time to reach vertex 1 is exactly $\frac{a}{b}$ or determine that this is impossible.

Solution

Case 2: $\frac{a}{b} \ge 1$. Define k as $\lfloor \frac{a}{b} \rfloor$.

- Consider a list of length 2k + 1 where every a_i is 1 except for a_k . We set a_k to a value such that $a_k > 2k + 1$ and the total number of vertices is divisible by b, i.e. $n = m \cdot b$.
- The average optimal time is $k \leq \frac{a}{b}$: all the ones cancel each other out.
- Moving a vertex one layer up increases the average by ¹/_{nb}. Moving (^a/_b − k) · nb vertices increases it to ^a/_b.
- Such movements are possible: over half of the vertices is at layer k, so moving those to layer k + 2 increases the average by 1, which is already too much.

Statistics: 196 submissions, 62 accepted, 67 unknown

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

ألبيها والبابعين وبالينصب برابع

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

فليصفع بمنابه بهيها وباله بمسطعة والمتح

Solution

 Every vertex should be balanced: the height of its left and right subtree should differ by at most one.

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

فأحدهم والمتجيبين وباليحصب والمتح

- Every vertex should be balanced: the height of its left and right subtree should differ by at most one.
- Naive solution: remove the deepest leaves below vertices that are too high.

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

فأحدهم والمتجيبين وباليحصب والمتح

- Every vertex should be balanced: the height of its left and right subtree should differ by at most one.
- Naive solution: remove the deepest leaves below vertices that are too high.
- This takes $\mathcal{O}(n)$ time per vertex, so too slow.

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

ألهرها والبعين والبريسية والمعادية

Solution

- Idea: determine the maximal height every subtree can have, and then remove vertices.

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

فأحدهم والمتحجين وباليحصينا والمؤ

- Idea: determine the maximal height every subtree can have, and then remove vertices.
- First, compute all heights using a DFS.

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

أحجر الملاحد الباد معينين وبدأتي ومعمد العيار ويتر

- Idea: determine the maximal height every subtree can have, and then remove vertices.
- First, compute all heights using a DFS.
- Set the required heights using a second DFS. For a vertex v with children l and r, the minimal required height of l is: $\min(H(l), H(r) + 1, ReqH(v) 1)$. Analogous for r.

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

أحجر الملاحد الباد معينين وبدأتي ومعمد العيار ويتر

- Idea: determine the maximal height every subtree can have, and then remove vertices.
- First, compute all heights using a DFS.
- Set the required heights using a second DFS. For a vertex v with children l and r, the minimal required height of l is: $\min(H(l), H(r) + 1, ReqH(v) 1)$. Analogous for r.
- Finally, remove all vertices with negative height.

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

أحماهم والابتيان والمراجع والمراجع المراجع

- Idea: determine the maximal height every subtree can have, and then remove vertices.
- First, compute all heights using a DFS.
- Set the required heights using a second DFS. For a vertex v with children l and r, the minimal required height of l is: $\min(H(l), H(r) + 1, ReqH(v) 1)$. Analogous for r.
- Finally, remove all vertices with negative height.
- Runtime: $\mathcal{O}(n)$

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

أأخطف منابه مهير وماتي مسمعا بهاريه

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

أأحركا مالية ميروجين أيتحمد والباد

Statistics: 100 submissions, 45 accepted, 33 unknown

Problem

Given a binary tree, determine the minimal number of leaves you should remove to make the tree strongly balanced.

أأحركا مالية ميروجين أيتحمد والباد

Statistics: 100 submissions, 45 accepted, 33 unknown

Problem

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

الكاساء أنيجو يوطه والإله ومرابلة السع

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

القاصا فأني موجو يوكون وتوليه ومحاطئا كعا

Naive solution

• $I_i \subset I_j$ is only possible if $r_i - \ell_i = t_i < t_j = r_j - \ell_j$.

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

القاصا فأني موجو وكرم وتوليه ومحاطئا كعب

Naive solution

- $I_i \subset I_j$ is only possible if $r_i \ell_i = t_i < t_j = r_j \ell_j$.
- Sort by decreasing length and iterate over all longer intervals → O(n²).

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

فالكسادة يرجو يوطور والإلي ووراطك سن

Solution

• Sort by increasing ℓ first, and then decreasing r.

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

الفاصلحان وجوي وكرو وتوليه ووردانية المتع

- Sort by increasing ℓ first, and then decreasing r.
- The value $v(I_i)$ of $[\ell_i, r_i]$ is $1 + \max_{\ell_j \leq \ell_i, r_i \leq r_j} v(r_j)$.

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

الفاصلحان وجوي وتواور وتولوه وودائلوا كعب

- Sort by increasing ℓ first, and then decreasing r.
- The value $v(I_i)$ of $[\ell_i, r_i]$ is $1 + \max_{\ell_j \leq \ell_i, r_i \leq r_j} v(r_j)$.
- Ignore r_i if $r_i < r_j$ and $v(I_i) \le v(I_j)$.

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

أفاكما فأسيدو يوضيها وتوليه ومربطها سنب

- Sort by increasing ℓ first, and then decreasing r.
- The value $v(I_i)$ of $[\ell_i, r_i]$ is $1 + \max_{\ell_j \leq \ell_i, r_i \leq r_j} v(r_j)$.
- Ignore r_i if $r_i < r_j$ and $v(I_i) \le v(I_j)$.
- What is left are increasing r_i with decreasing v, that can be stored in an ordered set.

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

الفاصاعة يرجون وكري وتوليجون للك

- Sort by increasing ℓ first, and then decreasing r.
- The value $v(I_i)$ of $[\ell_i, r_i]$ is $1 + \max_{\ell_j \leq \ell_i, r_i \leq r_j} v(r_j)$.
- Ignore r_i if $r_i < r_j$ and $v(I_i) \le v(I_j)$.
- What is left are increasing r_i with decreasing v, that can be stored in an ordered set.
- Compute $v(I_i)$ by looking up the first element at least r_i .

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

الفاصادة يرجون وحجي وتوليجون للك

- Sort by increasing ℓ first, and then decreasing r.
- The value $v(I_i)$ of $[\ell_i, r_i]$ is $1 + \max_{\ell_j \leq \ell_i, r_i \leq r_j} v(r_j)$.
- Ignore r_i if $r_i < r_j$ and $v(I_i) \le v(I_j)$.
- What is left are increasing r_i with decreasing v, that can be stored in an ordered set.
- Compute $v(I_i)$ by looking up the first element at least r_i .
- Insert $v(I_i)$ into the set and remove new suboptimal points that follow it.
Problem

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

الكاساء أيرجو وطرير ولؤلو ووراطة سن

Problem

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

الكاساء أيرجو وطرير والإله ومراطئ سن

Problem

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

الكاسانة أريسها وحايد والإله ومدراطة السع

Problem

Given *n* intervals $I_i = [\ell_i, r_i]$, for each of them find the length $v(I_i)$ of the longest *chain* $I_i \subset I_{i_1} \subset I_{i_2} \subset \ldots$

الماحادة وحرج وحرور وتوقع وجرد لطراحه

Statistics: 113 submissions, 42 accepted, 36 unknown

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps. In each step, you can either:

the state of the s

- move one carriage to the left,
- move one carriage to the right, or
- toggle the light switch in the current carriage.

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps. In each step, you can either:

and the second se

- move one carriage to the left,
- move one carriage to the right, or
- toggle the light switch in the current carriage.

Solution

• Naive solution: for some x, walk x steps to the right turning everything off, then flip one light switch, and walk x steps back to see if the light changed somewhere.

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps. In each step, you can either:

and the state of the second state of the secon

- move one carriage to the left,
- move one carriage to the right, or
- toggle the light switch in the current carriage.

- Naive solution: for some x, walk x steps to the right turning everything off, then flip one light switch, and walk x steps back to see if the light changed somewhere.
- If it did, then you know the length. If not, then try again with a larger x.

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps. In each step, you can either:

- move one carriage to the left,
- move one carriage to the right, or
- toggle the light switch in the current carriage.

- Naive solution: for some x, walk x steps to the right turning everything off, then flip one light switch, and walk x steps back to see if the light changed somewhere.
- If it did, then you know the length. If not, then try again with a larger x.
- This does not work: for small x, there is a lot of repetition so you need too many queries if n is large. For large x, you use too many queries if n is small.

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

and a first of the second s

Solution

• Alternative solution: use randomization.

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

and a state of the second s

- Alternative solution: use randomization.
- Choose a random sequence of bits of sufficient size (e.g. 25).

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

the second s

- Alternative solution: use randomization.
- Choose a random sequence of bits of sufficient size (e.g. 25).
- Set the initial 25 bits to the chosen sequence.

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

and the second second

- Alternative solution: use randomization.
- Choose a random sequence of bits of sufficient size (e.g. 25).
- Set the initial 25 bits to the chosen sequence.
- Walk to the right and keep track of the last read 25 bits.

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

- Alternative solution: use randomization.
- Choose a random sequence of bits of sufficient size (e.g. 25).
- Set the initial 25 bits to the chosen sequence.
- Walk to the right and keep track of the last read 25 bits.
- If the last read bits correspond to the chosen sequence, we assume we made a full round.

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

A REAL PROPERTY.

- Alternative solution: use randomization.
- Choose a random sequence of bits of sufficient size (e.g. 25).
- Set the initial 25 bits to the chosen sequence.
- Walk to the right and keep track of the last read 25 bits.
- If the last read bits correspond to the chosen sequence, we assume we made a full round.
- Determine the length of the round using the number of steps made.

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

Pitfalls

• The chosen bit sequence is not sufficiently long: De Bruijn sequences cover all 15-bit patterns..

and a first strength on the first of the

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

Pitfalls

• The chosen bit sequence is not sufficiently long: De Bruijn sequences cover all 15-bit patterns..

and the state of the

- The chosen bit sequence is not "sufficiently random":
 - 0000..., 010101...,
 - the default output of rand(),
 - the binary representation of special numbers: π , e, $\pi/2$, ϕ .

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

Pitfalls

• The chosen bit sequence is not sufficiently long: De Bruijn sequences cover all 15-bit patterns..

and the second second

- The chosen bit sequence is not "sufficiently random":
 - 0000..., 010101...,
 - the default output of rand(),
 - the binary representation of special numbers: π , e, $\pi/2$, ϕ .
- Carefully handle the case where *n* is smaller than the length of the chosen sequence!

Determine the number *n* of train carriages of a circular train using at most 3n + 500 steps.

Pitfalls

• The chosen bit sequence is not sufficiently long: De Bruijn sequences cover all 15-bit patterns..

and the second second

- The chosen bit sequence is not "sufficiently random":
 - 0000..., 010101...,
 - the default output of rand(),
 - the binary representation of special numbers: π , e, $\pi/2$, ϕ .
- Carefully handle the case where *n* is smaller than the length of the chosen sequence!

Statistics: 148 submissions, 39 accepted, 67 unknown

Problem

Spread a number of pizza toppings around a circular pizza such that:

- each pizza topping only appears on some consecutive segment of the slices,
- there are at most two toppings on each slice, and
- the topping combinations match with a given list of preferences.

a la base and

Problem

Spread a number of pizza toppings around a circular pizza such that:

- each pizza topping only appears on some consecutive segment of the slices,
- there are at most two toppings on each slice, and
- the topping combinations match with a given list of preferences.

and the second se

Insight

Model the problem as a graph, with the toppings as nodes and the topping combinations as edges.

Solution

If any node has at least 3 non-leaf neighbours, then the answer is impossible:

• Suppose 1 has neighbours 2, 3 and 4, which each have a neighbour other than 1.

the same of a local sector.

Solution

If any node has at least 3 non-leaf neighbours, then the answer is impossible:

- Suppose 1 has neighbours 2, 3 and 4, which each have a neighbour other than 1.
- There are slices (1,2), (1,3), (1,4) and (2,x), (3,y), (4,z) with $1 \notin \{x, y, z\}$.

all a beauty

Solution

If any node has at least 3 non-leaf neighbours, then the answer is impossible:

• Suppose 1 has neighbours 2, 3 and 4, which each have a neighbour other than 1.

a dia kana ka

- There are slices (1,2), (1,3), (1,4) and (2,x), (3,y), (4,z) with $1 \notin \{x, y, z\}$.
- Place the slices (1, 2), (1, 3), (1, 4) somewhere on the pizza.

Solution

If any node has at least 3 non-leaf neighbours, then the answer is impossible:

- Suppose 1 has neighbours 2, 3 and 4, which each have a neighbour other than 1.
- There are slices (1,2), (1,3), (1,4) and (2,x), (3,y), (4,z) with $1 \notin \{x, y, z\}$.
- Place the slices (1,2), (1,3), (1,4) somewhere on the pizza.
- Slices (2, x), (3, y), (4, z) go somewhere between these \rightarrow no consecutive range of 1's possible.

a la basis

Solution

Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

and a local sector of the

Solution

Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

and a local state of the

• Find all components and determine whether they are cycles or paths, e.g. by counting nodes, edges and loops.

Solution

Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

a la base and

- Find all components and determine whether they are cycles or paths, e.g. by counting nodes, edges and loops.
- Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.

Solution

Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

a la base ba

- Find all components and determine whether they are cycles or paths, e.g. by counting nodes, edges and loops.
- Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.
- The answer is possible iff the graph is connected or all components are paths.

Solution

Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

والمحالية المحالية

- Find all components and determine whether they are cycles or paths, e.g. by counting nodes, edges and loops.
- Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.
- The answer is possible iff the graph is connected or all components are paths.
- Potential pitfalls: isolated vertices, paths of length 1, cycles of length 1, duplicate edges...

Solution

Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

a la base b

- Find all components and determine whether they are cycles or paths, e.g. by counting nodes, edges and loops.
- Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.
- The answer is possible iff the graph is connected or all components are paths.
- Potential pitfalls: isolated vertices, paths of length 1, cycles of length 1, duplicate edges...

Statistics: 155 submissions, 13 accepted, 90 unknown

Given a game of Wordle with a word of length ℓ and g guesses with g-1 guesses already made, find a valid final guess.

and the second second

Given a game of Wordle with a word of length ℓ and g guesses with g-1 guesses already made, find a valid final guess.

The state of the

Observations

What can we learn from an existing guess?

Given a game of Wordle with a word of length ℓ and g guesses with g-1 guesses already made, find a valid final guess.

The state of the

- What can we learn from an existing guess?
 - Green position: given letter is at that position.

Given a game of Wordle with a word of length ℓ and g guesses with g-1 guesses already made, find a valid final guess.

and the second second

- What can we learn from an existing guess?
 - Green position: given letter is at that position.
 - Yellow or gray position: given letter is not at that position.

Given a game of Wordle with a word of length ℓ and g guesses with g-1 guesses already made, find a valid final guess.

and the state of the

- What can we learn from an existing guess?
 - Green position: given letter is at that position.
 - Yellow or gray position: given letter is not at that position.
 - A letter appears in the solution at least as often as the maximum number of green + yellow positions.

Given a game of Wordle with a word of length ℓ and g guesses with g-1 guesses already made, find a valid final guess.

The second second

- What can we learn from an existing guess?
 - Green position: given letter is at that position.
 - Yellow or gray position: given letter is not at that position.
 - A letter appears in the solution at least as often as the maximum number of green + yellow positions.
 - If that letter also appears in a gray position, it appears in the solution exactly as often as the maximum number of green + yellow positions.
Given a game of Wordle with a word of length ℓ and g guesses with g-1 guesses already made, find a valid final guess.

The state of the s

- What can we learn from an existing guess?
 - Green position: given letter is at that position.
 - Yellow or gray position: given letter is not at that position.
 - A letter appears in the solution at least as often as the maximum number of green + yellow positions.
 - If that letter also appears in a gray position, it appears in the solution exactly as often as the maximum number of green + yellow positions.
- So, for each letter, we have
 - a list of positions in which it *must* appear,
 - a list of positions in which it *must not* appear, and
 - a lower and upper bound on the number of appearances.

Given a game of Wordle with a word of length ℓ and g guesses with g-1 guesses already made, find a valid final guess.

and the state of the

- What can we learn from an existing guess?
 - Green position: given letter is at that position.
 - Yellow or gray position: given letter is not at that position.
 - A letter appears in the solution at least as often as the maximum number of green + yellow positions.
 - If that letter also appears in a gray position, it appears in the solution exactly as often as the maximum number of green + yellow positions.
- So, for each letter, we have
 - a list of positions in which it *must* appear,
 - a list of positions in which it *must not* appear, and
 - a lower and upper bound on the number of appearances.
- How to find a word satisfying these requirements?

Observations

- For each letter ℓ , we have
 - a list of positions in which it *must* appear,
 - a list of positions in which it *must not* appear, and
 - a lower bound I_{ℓ} and upper bound u_{ℓ} on the number of appearances.

No. of Concession, Name

Observations

- For each letter ℓ , we have
 - a list of positions in which it *must* appear,
 - a list of positions in which it *must not* appear, and
 - a lower bound I_{ℓ} and upper bound u_{ℓ} on the number of appearances.

al a gran and a last

Solution

• First, consider simplified version where $I_{\ell} = 0$ for all ℓ .

Observations

- For each letter ℓ , we have
 - a list of positions in which it *must* appear,
 - a list of positions in which it must not appear, and
 - a lower bound I_ℓ and upper bound u_ℓ on the number of appearances.

Solution

- First, consider simplified version where $I_{\ell} = 0$ for all ℓ .
- Solvable using max-flow
 - Green positions: single incoming edge.
 - Otherwise: incoming edge for every possible character.

The state of the state

 Multiple ways to extend this to arbitrary lower bounds. a second second

- Multiple ways to extend this to arbitrary lower bounds.
 - If you have the code: min-cost max-flow.

and the second

- Multiple ways to extend this to arbitrary lower bounds.
 - If you have the code: min-cost max-flow.
- Also possible: more clever max-flow modelling.
 - Edge from s to a letter ℓ has capacity I_ℓ;
 - Edge from s' to a letter ℓ has capacity $u_{\ell} l_{\ell}$.

- Multiple ways to extend this to arbitrary lower bounds.
 - If you have the code: min-cost max-flow.
- Also possible: more clever max-flow modelling.
 - Edge from s to a letter ℓ has capacity I_ℓ;
 - Edge from s' to a letter ℓ has capacity u_ℓ − l_ℓ.

Statistics: 82 submissions, 4 accepted, 57 unknown

Problem

Given integers a_0 to a_n , how many of the following iterations does it take to sort them:

- Odd rounds: Sort pairs $(a_0, a_1), (a_2, a_3), \ldots$
- Even rounds: Sort pairs (a_1, a_2) , (a_3, a_4) ,

Problem

Given integers a_0 to a_n , how many of the following iterations does it take to sort them:

- Odd rounds: Sort pairs $(a_0, a_1), (a_2, a_3), \ldots$
- Even rounds: Sort pairs (*a*₁, *a*₂), (*a*₃, *a*₄),

Observations

• Naive solution: simulating $\mathcal{O}(n)$ steps takes $\mathcal{O}(n^2)$ time.

Problem

Given integers a_0 to a_n , how many of the following iterations does it take to sort them:

- Odd rounds: Sort pairs (*a*₀, *a*₁), (*a*₂, *a*₃),
- Even rounds: Sort pairs (*a*₁, *a*₂), (*a*₃, *a*₄),

- Naive solution: simulating $\mathcal{O}(n)$ steps takes $\mathcal{O}(n^2)$ time.
- Say the last swap is (x, y).

Problem

Given integers a_0 to a_n , how many of the following iterations does it take to sort them:

- Odd rounds: Sort pairs (*a*₀, *a*₁), (*a*₂, *a*₃),
- Even rounds: Sort pairs (*a*₁, *a*₂), (*a*₃, *a*₄),

- Naive solution: simulating $\mathcal{O}(n)$ steps takes $\mathcal{O}(n^2)$ time.
- Say the last swap is (x, y).
- Replacing $a_i \leq x$ by 0 and $a_i > x$ by 1 gives an input that takes the same number of iterations.

Problem

Given integers a_0 to a_n , how many of the following iterations does it take to sort them:

- Odd rounds: Sort pairs (*a*₀, *a*₁), (*a*₂, *a*₃),
- Even rounds: Sort pairs (*a*₁, *a*₂), (*a*₃, *a*₄),

- Naive solution: simulating $\mathcal{O}(n)$ steps takes $\mathcal{O}(n^2)$ time.
- Say the last swap is (x, y).
- Replacing $a_i \leq x$ by 0 and $a_i > x$ by 1 gives an input that takes the same number of iterations.
- Idea: incrementally solve this 01-instance for every $x = a_i$ and take the maximum.

Problem Author: Bjarki Ágúst Guðmundsson

Solution for 01-instance

• Os move left, 1s move right.

Problem Author: Bjarki Ágúst Guðmundsson

- Os move left, 1s move right.
- The rightmost 0 is the last 0 to be *fixed*.

Problem Author: Bjarki Ágúst Guðmundsson

- Os move left, 1s move right.
- The rightmost 0 is the last 0 to be *fixed*.
- A 0 is *congested* when blocked by another 0.

Problem Author: Bjarki Ágúst Guðmundsson

- Os move left, 1s move right.
- The rightmost 0 is the last 0 to be *fixed*.
- A 0 is *congested* when blocked by another 0.
- For each unfixed 0, the total time is at least:
 - The time to fix this 0 fixed assuming no congestion, plus
 - the number of 0s after it, since at most one 0 can be fixed in each iteration.

Problem Author: Bjarki Ágúst Guðmundsson

- Os move left, 1s move right.
- The rightmost 0 is the last 0 to be *fixed*.
- A 0 is *congested* when blocked by another 0.
- For each unfixed 0, the total time is at least:
 - The time to fix this 0 fixed assuming no congestion, plus
 - the number of 0s after it, since at most one 0 can be fixed in each iteration.
- The maximum over all unfixed 0s is the answer.

Problem

Given integers a_0 to a_n , how many of the following iterations does it take to sort them:

- Odd rounds: Sort pairs $(a_0, a_1), (a_2, a_3), \ldots$
- Even rounds: Sort pairs (*a*₁, *a*₂), (*a*₃, *a*₄),

Solution

Incrementally solve all 01-instances for increasing x.

¹Check the README for details.

Problem

Given integers a_0 to a_n , how many of the following iterations does it take to sort them:

- Odd rounds: Sort pairs (*a*₀, *a*₁), (*a*₂, *a*₃),
- Even rounds: Sort pairs (*a*₁, *a*₂), (*a*₃, *a*₄),

- Incrementally solve all 01-instances for increasing x.
- Use a segment tree¹ to efficiently query the maximum time.

¹Check the README for details.

Problem

Given integers a_0 to a_n , how many of the following iterations does it take to sort them:

- Odd rounds: Sort pairs (*a*₀, *a*₁), (*a*₂, *a*₃),
- Even rounds: Sort pairs (*a*₁, *a*₂), (*a*₃, *a*₄),

- Incrementally solve all 01-instances for increasing x.
- Use a segment tree¹ to efficiently query the maximum time.
- Incrementally update it for every 0 that changes to a 1.

¹Check the README for details.

Problem

Given integers a_0 to a_n , how many of the following iterations does it take to sort them:

- Odd rounds: Sort pairs (*a*₀, *a*₁), (*a*₂, *a*₃),
- Even rounds: Sort pairs (*a*₁, *a*₂), (*a*₃, *a*₄),

Solution

- Incrementally solve all 01-instances for increasing x.
- Use a segment tree¹ to efficiently query the maximum time.
- Incrementally update it for every 0 that changes to a 1.

Statistics: 42 submissions, 0 accepted, 17 unknown

¹Check the README for details.

Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Observation

• If the solution line has positive slope, then:

Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

- If the solution line has positive slope, then:
 - it passes below the top left corners of every rectangle,

Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

- If the solution line has positive slope, then:
 - it passes below the top left corners of every rectangle,
 - it passes over the bottom right corner of every rectangle.

Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

. . . .

- If the solution line has positive slope, then:
 - it passes below the top left corners of every rectangle,
 - it passes over the bottom right corner of every rectangle.
- For lines with negative slope, something similar holds.

Problem Author: Michael Zündorf

Problem

Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Observation

Use the upper convex hull of the red points and lower convex hull of the blue points.

Problem Author: Michael Zündorf

Problem

Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

. . . .

Observation

Use the upper convex hull of the red points and lower convex hull of the blue points.

• A line that passes in between intersects all rectangles.

Problem Author: Michael Zündorf

Problem

Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

. . . .

Observation

Use the upper convex hull of the red points and lower convex hull of the blue points.

- A line that passes in between intersects all rectangles.
- A line inside a convex hull goes above/below a red/blue point.

- First check for lines with positive slope:
 - Compute the lower convex hull of all top left corners.
 - Compute the upper convex hull of all bottom right corners.
 - Check (in linear time) whether these intersect.

. . . .

- First check for lines with positive slope:
 - Compute the lower convex hull of all top left corners.
 - Compute the upper convex hull of all bottom right corners.
 - Check (in linear time) whether these intersect.
- In a similar way, check for lines with negative slope.

- First check for lines with positive slope:
 - Compute the lower convex hull of all top left corners.
 - Compute the upper convex hull of all bottom right corners.
 - Check (in linear time) whether these intersect.
- In a similar way, check for lines with negative slope.
- Also check for vertical lines.

- First check for lines with positive slope:
 - Compute the lower convex hull of all top left corners.
 - Compute the upper convex hull of all bottom right corners.
 - Check (in linear time) whether these intersect.
- In a similar way, check for lines with negative slope.
- Also check for vertical lines.
- Total running time: $\mathcal{O}(n \log n)$.

Solution

- First check for lines with positive slope:
 - Compute the lower convex hull of all top left corners.
 - Compute the upper convex hull of all bottom right corners.
 - Check (in linear time) whether these intersect.
- In a similar way, check for lines with negative slope.
- Also check for vertical lines.
- Total running time: $\mathcal{O}(n \log n)$.

Fun Fact

What is a laser?
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Solution

- First check for lines with positive slope:
 - Compute the lower convex hull of all top left corners.
 - Compute the upper convex hull of all bottom right corners.
 - Check (in linear time) whether these intersect.
- In a similar way, check for lines with negative slope.
- Also check for vertical lines.
- Total running time: $\mathcal{O}(n \log n)$.

Fun Fact

What is a laser? We only defined "hull beam".

F: Faster Than Light

Statistics: 29 submissions, 0 accepted, 26 unknown

Language stats

Jury work

• 720 commits (including test session) (last year: 632)

Jury work

- 720 commits (including test session) (last year: 632)
- 1424 secret test cases (last year: 681) $(118\frac{2}{3} \text{ per problem}!)$

Jury work

- 720 commits (including test session) (last year: 632)
- 1424 secret test cases (last year: 681) $(118\frac{2}{3} \text{ per problem}!)$
- 239 jury solutions (last year: 248)

Jury work

- 720 commits (including test session) (last year: 632)
- 1424 secret test cases (last year: 681) $(118\frac{2}{3} \text{ per problem}!)$
- 239 jury solutions (last year: 248)
- The minimum² number of lines the jury needed to solve all problems is

19 + 1 + 6 + 6 + 14 + 22 + 3 + 6 + 2 + 31 + 8 + 45 = 163

On average 13.6 lines per problem, down from 35.5 last year

Jury work

- 720 commits (including test session) (last year: 632)
- 1424 secret test cases (last year: 681) $(118\frac{2}{3} \text{ per problem}!)$
- 239 jury solutions (last year: 248)
- The minimum² number of lines the jury needed to solve all problems is

19+1+6+6+14+22+3+6+2+31+8+45=163

On average 13.6 lines per problem, down from 35.5 last year

• Only team ORTEC beat us: they have a submission of 22 lines for Justice Served!

²After code golfing

Jury dedication

• Most test cases for Faster Than Light were generated after midnight and/or yesterday.

Jury dedication

- Most test cases for Faster Than Light were generated after midnight and/or yesterday.
- The 80-20 rule is a thing: 80% of our time is spent on 20% of the problem statement.

Jury dedication

- Most test cases for Faster Than Light were generated after midnight and/or yesterday.
- The 80–20 rule is a thing: 80% of our time is spent on 20% of the problem statement.
- The longest discussions were about tiny style issues like "illustration" vs. "visualisation".

