
NWERC 2022

Solutions presentation

November 27, 2022

The NWERC 2022 Jury

• Bjarki Ágúst Guðmundsson
Google

• Jorke de Vlas
Utrecht University

• Ludo Pulles
Centrum Wiskunde & Informatica
Amsterdam

• Maarten Sijm
CHipCie (Delft University of Technology)

• Markus Himmel
CAS Software, Karlsruhe

• Michael Zündorf
Karlsruhe Institute of Technology

• Nils Gustafsson
KTH Royal Institute of Technology

• Paul Wild
FAU Erlangen-Nürnberg

• Peter Kluit
Delft University of Technology

• Ragnar Groot Koerkamp
ETH Zurich

• Reinier Schmiermann
Utrecht University

• Timon Knigge
ETH Zurich

• Wendy Yi
Karlsruhe Institute of Technology

Big thanks to our test solvers

• Bernhard Linn Hilmarsson
ETH Zurich

• Bergur Snorrason
University of Iceland

• Federico Glaudo
ETH Zurich

• Henri Devillez
Université Catholique de Louvain

• Joey Haas
Sioux Technologies

I: Interview Question
Problem Author: Paul Wild

Problem
A group of players takes turns counting through the integers from c to d , except that
• each multiple of a is replaced by Fizz

• each multiple of b is replaced by Buzz

• each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Solution

• Find all the positions with Fizz (or FizzBuzz) and all the positions with Buzz (or FizzBuzz),
then solve independently.

• Three cases depending on the number of occurrences:
2 or more ⇝ output the difference between the first two occurrences.

1 ⇝ output the position of that single occurrence.
0 ⇝ output some number past the end of the range.

I: Interview Question
Problem Author: Paul Wild

Problem
A group of players takes turns counting through the integers from c to d , except that
• each multiple of a is replaced by Fizz

• each multiple of b is replaced by Buzz

• each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Solution

• Find all the positions with Fizz (or FizzBuzz) and all the positions with Buzz (or FizzBuzz),
then solve independently.

• Three cases depending on the number of occurrences:
2 or more ⇝ output the difference between the first two occurrences.

1 ⇝ output the position of that single occurrence.
0 ⇝ output some number past the end of the range.

I: Interview Question
Problem Author: Paul Wild

Problem
A group of players takes turns counting through the integers from c to d , except that
• each multiple of a is replaced by Fizz

• each multiple of b is replaced by Buzz

• each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Solution

• Find all the positions with Fizz (or FizzBuzz) and all the positions with Buzz (or FizzBuzz),
then solve independently.

• Three cases depending on the number of occurrences:
2 or more ⇝ output the difference between the first two occurrences.

1 ⇝ output the position of that single occurrence.
0 ⇝ output some number past the end of the range.

I: Interview Question
Problem Author: Paul Wild

Problem
A group of players takes turns counting through the integers from c to d , except that
• each multiple of a is replaced by Fizz

• each multiple of b is replaced by Buzz

• each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Pitfalls
Exceptions in Java are not fast enough. . .

try { int v = Integer.parseInt(s); } catch (NumberFormatException e) { ... }

Statistics: 268 submissions, 136 accepted, 5 unknown

I: Interview Question
Problem Author: Paul Wild

Problem
A group of players takes turns counting through the integers from c to d , except that
• each multiple of a is replaced by Fizz

• each multiple of b is replaced by Buzz

• each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Pitfalls
Exceptions in Java are not fast enough. . .

try { int v = Integer.parseInt(s); } catch (NumberFormatException e) { ... }

Statistics: 268 submissions, 136 accepted, 5 unknown

B: Bottle Flip
Problem Author: Jorke de Vlas

Problem
Given:

• the density da of air and dw of water,
• the radius r and height h of a cylindrical container.

To which height should the cylinder be filled with water to minimise the height of the centre of mass?

B: Bottle Flip
Problem Author: Jorke de Vlas

Problem
Given:

• the density da of air and dw of water,
• the radius r and height h of a cylindrical container.

To which height should the cylinder be filled with water to minimise the height of the centre of mass?

B: Bottle Flip
Problem Author: Jorke de Vlas

Observations

• The radius r is irrelevant.

• The result can be found using ternary search.

Solution

• Given the height hw , calculate ha = h − hw .
• The centre of mass of the water is at height cw = hw

2 .
• The centre of mass of the air is at height ca = h − ha

2 .
• The height of the combined centre of mass is the weighted average:

ca · da · ha + cw · dw · hw

ha · da + hw · dw
.

• Can also be found by differentiating a nasty expression (left as an exercise for the reader).

Statistics: 154 submissions, 100 accepted, 22 unknown

B: Bottle Flip
Problem Author: Jorke de Vlas

Observations

• The radius r is irrelevant.
• The result can be found using ternary search.

Solution

• Given the height hw , calculate ha = h − hw .
• The centre of mass of the water is at height cw = hw

2 .
• The centre of mass of the air is at height ca = h − ha

2 .
• The height of the combined centre of mass is the weighted average:

ca · da · ha + cw · dw · hw

ha · da + hw · dw
.

• Can also be found by differentiating a nasty expression (left as an exercise for the reader).

Statistics: 154 submissions, 100 accepted, 22 unknown

B: Bottle Flip
Problem Author: Jorke de Vlas

Observations

• The radius r is irrelevant.
• The result can be found using ternary search.

Solution

• Given the height hw , calculate ha = h − hw .
• The centre of mass of the water is at height cw = hw

2 .
• The centre of mass of the air is at height ca = h − ha

2 .

• The height of the combined centre of mass is the weighted average:

ca · da · ha + cw · dw · hw

ha · da + hw · dw
.

• Can also be found by differentiating a nasty expression (left as an exercise for the reader).

Statistics: 154 submissions, 100 accepted, 22 unknown

B: Bottle Flip
Problem Author: Jorke de Vlas

Observations

• The radius r is irrelevant.
• The result can be found using ternary search.

Solution

• Given the height hw , calculate ha = h − hw .
• The centre of mass of the water is at height cw = hw

2 .
• The centre of mass of the air is at height ca = h − ha

2 .
• The height of the combined centre of mass is the weighted average

:

ca · da · ha + cw · dw · hw

ha · da + hw · dw
.

• Can also be found by differentiating a nasty expression (left as an exercise for the reader).

Statistics: 154 submissions, 100 accepted, 22 unknown

B: Bottle Flip
Problem Author: Jorke de Vlas

Observations

• The radius r is irrelevant.
• The result can be found using ternary search.

Solution

• Given the height hw , calculate ha = h − hw .
• The centre of mass of the water is at height cw = hw

2 .
• The centre of mass of the air is at height ca = h − ha

2 .
• The height of the combined centre of mass is the weighted average:

ca · da · ha + cw · dw · hw

ha · da + hw · dw
.

• Can also be found by differentiating a nasty expression (left as an exercise for the reader).

Statistics: 154 submissions, 100 accepted, 22 unknown

B: Bottle Flip
Problem Author: Jorke de Vlas

Observations

• The radius r is irrelevant.
• The result can be found using ternary search.

Solution

• Given the height hw , calculate ha = h − hw .
• The centre of mass of the water is at height cw = hw

2 .
• The centre of mass of the air is at height ca = h − ha

2 .
• The height of the combined centre of mass is the weighted average:

ca · da · ha + cw · dw · hw

ha · da + hw · dw
.

• Can also be found by differentiating a nasty expression (left as an exercise for the reader).

Statistics: 154 submissions, 100 accepted, 22 unknown

C: Circular Caramel Cookie
Problem Author: Maarten Sijm

Problem
Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

5

Solution

• For a fixed radius r , we can determine the number of whole unit squares that fit in the circle.
• Determine how many squares fit in each column using the Pythagorean Theorem. (O(

√
s))

• Use binary search to find the solution. Total time: O(log s ·
√

s).

C: Circular Caramel Cookie
Problem Author: Maarten Sijm

Problem
Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

5

Solution

• For a fixed radius r , we can determine the number of whole unit squares that fit in the circle.
• Determine how many squares fit in each column using the Pythagorean Theorem. (O(

√
s))

• Use binary search to find the solution. Total time: O(log s ·
√

s).

C: Circular Caramel Cookie
Problem Author: Maarten Sijm

Problem
Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

5

Solution

• For a fixed radius r , we can determine the number of whole unit squares that fit in the circle.

• Determine how many squares fit in each column using the Pythagorean Theorem. (O(
√

s))
• Use binary search to find the solution. Total time: O(log s ·

√
s).

C: Circular Caramel Cookie
Problem Author: Maarten Sijm

Problem
Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

5

Solution

• For a fixed radius r , we can determine the number of whole unit squares that fit in the circle.
• Determine how many squares fit in each column using the Pythagorean Theorem. (O(

√
s))

• Use binary search to find the solution. Total time: O(log s ·
√

s).

C: Circular Caramel Cookie
Problem Author: Maarten Sijm

Problem
Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

5

Solution

• For a fixed radius r , we can determine the number of whole unit squares that fit in the circle.
• Determine how many squares fit in each column using the Pythagorean Theorem. (O(

√
s))

• Use binary search to find the solution. Total time: O(log s ·
√

s).

C: Circular Caramel Cookie
Problem Author: Maarten Sijm

Problem
Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

5

Challenge
It is possible in O(

√
s) as well.

Statistics: 298 submissions, 89 accepted, 49 unknown

C: Circular Caramel Cookie
Problem Author: Maarten Sijm

Problem
Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

5

Challenge
It is possible in O(

√
s) as well.

Statistics: 298 submissions, 89 accepted, 49 unknown

D: Delft Distance
Problem Author: Reinier Schmiermann

Problem
Find the shortest path from the north-west to the south-east on a map of Delft with round towers
and square buildings.

Observation
Not all points on the map need to be checked:

D: Delft Distance
Problem Author: Reinier Schmiermann

Problem
Find the shortest path from the north-west to the south-east on a map of Delft with round towers
and square buildings.

Observation
Not all points on the map need to be checked:

D: Delft Distance
Problem Author: Reinier Schmiermann

Solution 1: Dijkstra

• Turn the map into a graph,
• straight edges are 10 m, and
• round edges are 5π m.

• Running Dijkstra takes O(n log n) time (n = w · h).

Solution 2: Dynamic Programming

• For every blue vertex (left-to-right, then top-to-bottom), take the minimum between
• going straight across (right or down) and
• going across a corner (right-and-down or down-and-right).

• This takes O(n) time (n = w · h).

D: Delft Distance
Problem Author: Reinier Schmiermann

Solution 1: Dijkstra

• Turn the map into a graph,
• straight edges are 10 m, and
• round edges are 5π m.

• Running Dijkstra takes O(n log n) time (n = w · h).

Solution 2: Dynamic Programming

• For every blue vertex (left-to-right, then top-to-bottom), take the minimum between
• going straight across (right or down) and
• going across a corner (right-and-down or down-and-right).

• This takes O(n) time (n = w · h).

D: Delft Distance
Problem Author: Reinier Schmiermann

Solution 1: Dijkstra

• Turn the map into a graph,
• straight edges are 10 m, and
• round edges are 5π m.

• Running Dijkstra takes O(n log n) time (n = w · h).

Solution 2: Dynamic Programming

• For every blue vertex (left-to-right, then top-to-bottom), take the minimum between
• going straight across (right or down) and
• going across a corner (right-and-down or down-and-right).

• This takes O(n) time (n = w · h).

D: Delft Distance
Problem Author: Reinier Schmiermann

Solution 1: Dijkstra

• Turn the map into a graph,
• straight edges are 10 m, and
• round edges are 5π m.

• Running Dijkstra takes O(n log n) time (n = w · h).

Solution 2: Dynamic Programming

• For every blue vertex (left-to-right, then top-to-bottom), take the minimum between
• going straight across (right or down) and
• going across a corner (right-and-down or down-and-right).

• This takes O(n) time (n = w · h).

D: Delft Distance
Problem Author: Reinier Schmiermann

Problem
Find the shortest path from the north-west to the south-east on a map of Delft with round towers
and square buildings.

Statistics: 215 submissions, 85 accepted, 53 unknown

D: Delft Distance
Problem Author: Reinier Schmiermann

Problem
Find the shortest path from the north-west to the south-east on a map of Delft with round towers
and square buildings.

Statistics: 215 submissions, 85 accepted, 53 unknown

D: Delft Distance
Problem Author: Reinier Schmiermann

Problem
Find the shortest path from the north-west to the south-east on a map of Delft with round towers
and square buildings.

Statistics: 215 submissions, 85 accepted, 53 unknown

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Observations

• Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is
a tree.

• The exact shape of this tree does not matter, only the number of vertices in each layer.
• Represent the graph as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i ,

satisfying:
• There is only 1 vertex at the root layer, so a0 = 1.
• There can only be vertices at layer x if there are some at layer x − 1, so for every i , ai ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Observations

• Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is
a tree.

• The exact shape of this tree does not matter, only the number of vertices in each layer.
• Represent the graph as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i

,
satisfying:

• There is only 1 vertex at the root layer, so a0 = 1.
• There can only be vertices at layer x if there are some at layer x − 1, so for every i , ai ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Observations

• Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is
a tree.

• The exact shape of this tree does not matter, only the number of vertices in each layer.

• Represent the graph as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i

,
satisfying:

• There is only 1 vertex at the root layer, so a0 = 1.
• There can only be vertices at layer x if there are some at layer x − 1, so for every i , ai ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Observations

• Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is
a tree.

• The exact shape of this tree does not matter, only the number of vertices in each layer.
• Represent the graph as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i

,
satisfying:

• There is only 1 vertex at the root layer, so a0 = 1.
• There can only be vertices at layer x if there are some at layer x − 1, so for every i , ai ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Observations

• Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is
a tree.

• The exact shape of this tree does not matter, only the number of vertices in each layer.
• Represent the graph as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i

,
satisfying:

• There is only 1 vertex at the root layer, so a0 = 1.
• There can only be vertices at layer x if there are some at layer x − 1, so for every i , ai ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Observations

• Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is
a tree.

• The exact shape of this tree does not matter, only the number of vertices in each layer.
• Represent the graph as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i ,

satisfying:
• There is only 1 vertex at the root layer, so a0 = 1.
• There can only be vertices at layer x if there are some at layer x − 1, so for every i , ai ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution

• The graph can be represented as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i .

• Given such a list, construct a graph: vertex 1 is the root, and vertices at layer i have a single
vertex at layer i − 1 as parent.

• The total number of vertices is a0 + a1 + . . . + ak .
• The optimal time for a vertex at layer i is i , so the average optimal time is 0·a0+1·a1+...+k·ak

a0+a1+...+ak
.

• We consider two cases: either a
b < 1 or a

b ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution

• The graph can be represented as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i .
• Given such a list, construct a graph: vertex 1 is the root, and vertices at layer i have a single

vertex at layer i − 1 as parent.

• The total number of vertices is a0 + a1 + . . . + ak .
• The optimal time for a vertex at layer i is i , so the average optimal time is 0·a0+1·a1+...+k·ak

a0+a1+...+ak
.

• We consider two cases: either a
b < 1 or a

b ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution

• The graph can be represented as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i .
• Given such a list, construct a graph: vertex 1 is the root, and vertices at layer i have a single

vertex at layer i − 1 as parent.
• The total number of vertices is a0 + a1 + . . . + ak .

• The optimal time for a vertex at layer i is i , so the average optimal time is 0·a0+1·a1+...+k·ak
a0+a1+...+ak

.
• We consider two cases: either a

b < 1 or a
b ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution

• The graph can be represented as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i .
• Given such a list, construct a graph: vertex 1 is the root, and vertices at layer i have a single

vertex at layer i − 1 as parent.
• The total number of vertices is a0 + a1 + . . . + ak .
• The optimal time for a vertex at layer i is i , so the average optimal time is 0·a0+1·a1+...+k·ak

a0+a1+...+ak
.

• We consider two cases: either a
b < 1 or a

b ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution

• The graph can be represented as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i .
• Given such a list, construct a graph: vertex 1 is the root, and vertices at layer i have a single

vertex at layer i − 1 as parent.
• The total number of vertices is a0 + a1 + . . . + ak .
• The optimal time for a vertex at layer i is i , so the average optimal time is 0·a0+1·a1+...+k·ak

a0+a1+...+ak
.

• We consider two cases: either a
b < 1 or a

b ≥ 1.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 1: a

b < 1.

• If there is a vertex with optimal time at least 2, then the average optimal time is at least 1. Thus,
such vertices cannot exist.

• The average optimal time is now a1
1+a1

.
• If a = b − 1, we solve the problem with the list (1, a). Otherwise, the answer is impossible.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 1: a

b < 1.

• If there is a vertex with optimal time at least 2, then the average optimal time is at least 1. Thus,
such vertices cannot exist.

• The average optimal time is now a1
1+a1

.

• If a = b − 1, we solve the problem with the list (1, a). Otherwise, the answer is impossible.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 1: a

b < 1.

• If there is a vertex with optimal time at least 2, then the average optimal time is at least 1. Thus,
such vertices cannot exist.

• The average optimal time is now a1
1+a1

.
• If a = b − 1, we solve the problem with the list (1, a). Otherwise, the answer is impossible.

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 2: a

b ≥ 1. Define k as ⌊ a
b ⌋.

• Consider a list of length 2k + 1 where every ai is 1 except for ak . We set ak to a value such that
ak > 2k + 1 and the total number of vertices is divisible by b, i.e. n = m · b.

• The average optimal time is k ≤ a
b : all the ones cancel each other out.

• Moving a vertex one layer up increases the average by 1
nb . Moving (a

b − k) · nb vertices increases it
to a

b .
• Such movements are possible: over half of the vertices is at layer k, so moving those to layer

k + 2 increases the average by 1, which is already too much.

Statistics: 196 submissions, 62 accepted, 67 unknown

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 2: a

b ≥ 1. Define k as ⌊ a
b ⌋.

• Consider a list of length 2k + 1 where every ai is 1 except for ak . We set ak to a value such that
ak > 2k + 1 and the total number of vertices is divisible by b, i.e. n = m · b.

• The average optimal time is k ≤ a
b : all the ones cancel each other out.

• Moving a vertex one layer up increases the average by 1
nb . Moving (a

b − k) · nb vertices increases it
to a

b .
• Such movements are possible: over half of the vertices is at layer k, so moving those to layer

k + 2 increases the average by 1, which is already too much.

Statistics: 196 submissions, 62 accepted, 67 unknown

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 2: a

b ≥ 1. Define k as ⌊ a
b ⌋.

• Consider a list of length 2k + 1 where every ai is 1 except for ak . We set ak to a value such that
ak > 2k + 1 and the total number of vertices is divisible by b, i.e. n = m · b.

• The average optimal time is k ≤ a
b : all the ones cancel each other out.

• Moving a vertex one layer up increases the average by 1
nb . Moving (a

b − k) · nb vertices increases it
to a

b .

• Such movements are possible: over half of the vertices is at layer k, so moving those to layer
k + 2 increases the average by 1, which is already too much.

Statistics: 196 submissions, 62 accepted, 67 unknown

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 2: a

b ≥ 1. Define k as ⌊ a
b ⌋.

• Consider a list of length 2k + 1 where every ai is 1 except for ak . We set ak to a value such that
ak > 2k + 1 and the total number of vertices is divisible by b, i.e. n = m · b.

• The average optimal time is k ≤ a
b : all the ones cancel each other out.

• Moving a vertex one layer up increases the average by 1
nb . Moving (a

b − k) · nb vertices increases it
to a

b .
• Such movements are possible: over half of the vertices is at layer k, so moving those to layer

k + 2 increases the average by 1, which is already too much.

Statistics: 196 submissions, 62 accepted, 67 unknown

E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 2: a

b ≥ 1. Define k as ⌊ a
b ⌋.

• Consider a list of length 2k + 1 where every ai is 1 except for ak . We set ak to a value such that
ak > 2k + 1 and the total number of vertices is divisible by b, i.e. n = m · b.

• The average optimal time is k ≤ a
b : all the ones cancel each other out.

• Moving a vertex one layer up increases the average by 1
nb . Moving (a

b − k) · nb vertices increases it
to a

b .
• Such movements are possible: over half of the vertices is at layer k, so moving those to layer

k + 2 increases the average by 1, which is already too much.

Statistics: 196 submissions, 62 accepted, 67 unknown

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Every vertex should be balanced: the height of its left and right subtree should differ by at most
one.

• Naive solution: remove the deepest leaves below vertices that are too high.
• This takes O(n) time per vertex, so too slow.

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Every vertex should be balanced: the height of its left and right subtree should differ by at most
one.

• Naive solution: remove the deepest leaves below vertices that are too high.
• This takes O(n) time per vertex, so too slow.

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Every vertex should be balanced: the height of its left and right subtree should differ by at most
one.

• Naive solution: remove the deepest leaves below vertices that are too high.

• This takes O(n) time per vertex, so too slow.

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Every vertex should be balanced: the height of its left and right subtree should differ by at most
one.

• Naive solution: remove the deepest leaves below vertices that are too high.
• This takes O(n) time per vertex, so too slow.

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Idea: determine the maximal height every subtree can have, and then remove vertices.

• First, compute all heights using a DFS.
• Set the required heights using a second DFS. For a vertex v with children l and r , the minimal

required height of l is: min(H(l), H(r) + 1, ReqH(v) − 1). Analogous for r .
• Finally, remove all vertices with negative height.
• Runtime: O(n)

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Idea: determine the maximal height every subtree can have, and then remove vertices.
• First, compute all heights using a DFS.

• Set the required heights using a second DFS. For a vertex v with children l and r , the minimal
required height of l is: min(H(l), H(r) + 1, ReqH(v) − 1). Analogous for r .

• Finally, remove all vertices with negative height.
• Runtime: O(n)

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Idea: determine the maximal height every subtree can have, and then remove vertices.
• First, compute all heights using a DFS.
• Set the required heights using a second DFS. For a vertex v with children l and r , the minimal

required height of l is: min(H(l), H(r) + 1, ReqH(v) − 1). Analogous for r .

• Finally, remove all vertices with negative height.
• Runtime: O(n)

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Idea: determine the maximal height every subtree can have, and then remove vertices.
• First, compute all heights using a DFS.
• Set the required heights using a second DFS. For a vertex v with children l and r , the minimal

required height of l is: min(H(l), H(r) + 1, ReqH(v) − 1). Analogous for r .
• Finally, remove all vertices with negative height.

• Runtime: O(n)

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Idea: determine the maximal height every subtree can have, and then remove vertices.
• First, compute all heights using a DFS.
• Set the required heights using a second DFS. For a vertex v with children l and r , the minimal

required height of l is: min(H(l), H(r) + 1, ReqH(v) − 1). Analogous for r .
• Finally, remove all vertices with negative height.
• Runtime: O(n)

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

1

10 22

2

23

3

14 24

4

20

5

67

8

9

13 17

11 12

16

15

31

28

18

19

30

21

25

26

27

29

Statistics: 100 submissions, 45 accepted, 33 unknown

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

1

16 129

2

3

4

10 195

6

49

7

54

8

9

120

11

20 70

12

61

13

55 77

14

140

15

74 136

17

144

18

145

21

40 101

22

57

23

112

24

62 73

25

130

26

90

27

28

87 10029

51 135

30

31

118

32

86

33

34

67 117

35

36

3738

147

39

85 13141

66 42

43

80 132

44

45

46

106

47

83 94

48

97

128

50

78

52

115 141

53

104 133

56

58 59

8160

63

99 13464

108 126

65113 124

68

116

69

121

71

72

79

75

76

119

82

10784

88

89

143

91

103 137

92

93

95

96

98

102

148

105

127

109

110

138 142

111114

125

146

122

139

123

Statistics: 100 submissions, 45 accepted, 33 unknown

H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

1

16 129

2

3

4

10 195

6

49

7

54

8

9

120

11

20 70

12

61

13

55 77

14

140

15

74 136

17

144

18

145

21

40 101

22

57

23

112

24

62 73

25

130

26

90

27

28

87 10029

51 135

30

31

118

32

86

33

34

67 117

35

36

3738

147

39

85 13141

66 42

43

80 132

44

45

46

106

47

83 94

48

97

128

50

78

52

115 141

53

104 133

56

58 59

8160

63

99 13464

108 126

65113 124

68

116

69

121

71

72

79

75

76

119

82

10784

88

89

143

91

103 137

92

93

95

96

98

102

148

105

127

109

110

138 142

111114

125

146

122

139

123

Statistics: 100 submissions, 45 accepted, 33 unknown

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Naive solution

• Ii ⊂ Ij is only possible if ri − ℓi = ti < tj = rj − ℓj .
• Sort by decreasing length and iterate over all longer intervals → O(n2).

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Naive solution

• Ii ⊂ Ij is only possible if ri − ℓi = ti < tj = rj − ℓj .

• Sort by decreasing length and iterate over all longer intervals → O(n2).

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Naive solution

• Ii ⊂ Ij is only possible if ri − ℓi = ti < tj = rj − ℓj .
• Sort by decreasing length and iterate over all longer intervals → O(n2).

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Solution

• Sort by increasing ℓ first, and then decreasing r .

• The value v(Ii) of [ℓi , ri] is 1 + maxℓj ≤ℓi ,ri ≤rj v(rj).
• Ignore ri if ri < rj and v(Ii) ≤ v(Ij).
• What is left are increasing ri with decreasing v , that can be stored in an ordered set.
• Compute v(Ii) by looking up the first element at least ri .
• Insert v(Ii) into the set and remove new suboptimal points that follow it.

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Solution

• Sort by increasing ℓ first, and then decreasing r .
• The value v(Ii) of [ℓi , ri] is 1 + maxℓj ≤ℓi ,ri ≤rj v(rj).

• Ignore ri if ri < rj and v(Ii) ≤ v(Ij).
• What is left are increasing ri with decreasing v , that can be stored in an ordered set.
• Compute v(Ii) by looking up the first element at least ri .
• Insert v(Ii) into the set and remove new suboptimal points that follow it.

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Solution

• Sort by increasing ℓ first, and then decreasing r .
• The value v(Ii) of [ℓi , ri] is 1 + maxℓj ≤ℓi ,ri ≤rj v(rj).
• Ignore ri if ri < rj and v(Ii) ≤ v(Ij).

• What is left are increasing ri with decreasing v , that can be stored in an ordered set.
• Compute v(Ii) by looking up the first element at least ri .
• Insert v(Ii) into the set and remove new suboptimal points that follow it.

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Solution

• Sort by increasing ℓ first, and then decreasing r .
• The value v(Ii) of [ℓi , ri] is 1 + maxℓj ≤ℓi ,ri ≤rj v(rj).
• Ignore ri if ri < rj and v(Ii) ≤ v(Ij).
• What is left are increasing ri with decreasing v , that can be stored in an ordered set.

• Compute v(Ii) by looking up the first element at least ri .
• Insert v(Ii) into the set and remove new suboptimal points that follow it.

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Solution

• Sort by increasing ℓ first, and then decreasing r .
• The value v(Ii) of [ℓi , ri] is 1 + maxℓj ≤ℓi ,ri ≤rj v(rj).
• Ignore ri if ri < rj and v(Ii) ≤ v(Ij).
• What is left are increasing ri with decreasing v , that can be stored in an ordered set.
• Compute v(Ii) by looking up the first element at least ri .

• Insert v(Ii) into the set and remove new suboptimal points that follow it.

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Solution

• Sort by increasing ℓ first, and then decreasing r .
• The value v(Ii) of [ℓi , ri] is 1 + maxℓj ≤ℓi ,ri ≤rj v(rj).
• Ignore ri if ri < rj and v(Ii) ≤ v(Ij).
• What is left are increasing ri with decreasing v , that can be stored in an ordered set.
• Compute v(Ii) by looking up the first element at least ri .
• Insert v(Ii) into the set and remove new suboptimal points that follow it.

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Statistics: 113 submissions, 42 accepted, 36 unknown

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Statistics: 113 submissions, 42 accepted, 36 unknown

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Statistics: 113 submissions, 42 accepted, 36 unknown

J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂

Statistics: 113 submissions, 42 accepted, 36 unknown

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.
In each step, you can either:

• move one carriage to the left,
• move one carriage to the right, or
• toggle the light switch in the current carriage.

Solution

• Naive solution: for some x , walk x steps to the right turning everything off, then flip one light
switch, and walk x steps back to see if the light changed somewhere.

• If it did, then you know the length. If not, then try again with a larger x .
• This does not work: for small x , there is a lot of repetition so you need too many queries if n is

large. For large x , you use too many queries if n is small.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.
In each step, you can either:

• move one carriage to the left,
• move one carriage to the right, or
• toggle the light switch in the current carriage.

Solution

• Naive solution: for some x , walk x steps to the right turning everything off, then flip one light
switch, and walk x steps back to see if the light changed somewhere.

• If it did, then you know the length. If not, then try again with a larger x .
• This does not work: for small x , there is a lot of repetition so you need too many queries if n is

large. For large x , you use too many queries if n is small.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.
In each step, you can either:

• move one carriage to the left,
• move one carriage to the right, or
• toggle the light switch in the current carriage.

Solution

• Naive solution: for some x , walk x steps to the right turning everything off, then flip one light
switch, and walk x steps back to see if the light changed somewhere.

• If it did, then you know the length. If not, then try again with a larger x .

• This does not work: for small x , there is a lot of repetition so you need too many queries if n is
large. For large x , you use too many queries if n is small.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.
In each step, you can either:

• move one carriage to the left,
• move one carriage to the right, or
• toggle the light switch in the current carriage.

Solution

• Naive solution: for some x , walk x steps to the right turning everything off, then flip one light
switch, and walk x steps back to see if the light changed somewhere.

• If it did, then you know the length. If not, then try again with a larger x .
• This does not work: for small x , there is a lot of repetition so you need too many queries if n is

large. For large x , you use too many queries if n is small.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Solution

• Alternative solution: use randomization.

• Choose a random sequence of bits of sufficient size (e.g. 25).
• Set the initial 25 bits to the chosen sequence.
• Walk to the right and keep track of the last read 25 bits.
• If the last read bits correspond to the chosen sequence, we assume we made a full round.
• Determine the length of the round using the number of steps made.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Solution

• Alternative solution: use randomization.
• Choose a random sequence of bits of sufficient size (e.g. 25).

• Set the initial 25 bits to the chosen sequence.
• Walk to the right and keep track of the last read 25 bits.
• If the last read bits correspond to the chosen sequence, we assume we made a full round.
• Determine the length of the round using the number of steps made.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Solution

• Alternative solution: use randomization.
• Choose a random sequence of bits of sufficient size (e.g. 25).
• Set the initial 25 bits to the chosen sequence.

• Walk to the right and keep track of the last read 25 bits.
• If the last read bits correspond to the chosen sequence, we assume we made a full round.
• Determine the length of the round using the number of steps made.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Solution

• Alternative solution: use randomization.
• Choose a random sequence of bits of sufficient size (e.g. 25).
• Set the initial 25 bits to the chosen sequence.
• Walk to the right and keep track of the last read 25 bits.

• If the last read bits correspond to the chosen sequence, we assume we made a full round.
• Determine the length of the round using the number of steps made.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Solution

• Alternative solution: use randomization.
• Choose a random sequence of bits of sufficient size (e.g. 25).
• Set the initial 25 bits to the chosen sequence.
• Walk to the right and keep track of the last read 25 bits.
• If the last read bits correspond to the chosen sequence, we assume we made a full round.

• Determine the length of the round using the number of steps made.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Solution

• Alternative solution: use randomization.
• Choose a random sequence of bits of sufficient size (e.g. 25).
• Set the initial 25 bits to the chosen sequence.
• Walk to the right and keep track of the last read 25 bits.
• If the last read bits correspond to the chosen sequence, we assume we made a full round.
• Determine the length of the round using the number of steps made.

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Pitfalls

• The chosen bit sequence is not sufficiently long: De Bruijn sequences cover all 15-bit patterns..

• The chosen bit sequence is not “sufficiently random”:
• 0000..., 010101...,
• the default output of rand(),
• the binary representation of special numbers: π, e, π/2, ϕ.

• Carefully handle the case where n is smaller than the length of the chosen sequence!

Statistics: 148 submissions, 39 accepted, 67 unknown

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Pitfalls

• The chosen bit sequence is not sufficiently long: De Bruijn sequences cover all 15-bit patterns..
• The chosen bit sequence is not “sufficiently random”:

• 0000..., 010101...,
• the default output of rand(),
• the binary representation of special numbers: π, e, π/2, ϕ.

• Carefully handle the case where n is smaller than the length of the chosen sequence!

Statistics: 148 submissions, 39 accepted, 67 unknown

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Pitfalls

• The chosen bit sequence is not sufficiently long: De Bruijn sequences cover all 15-bit patterns..
• The chosen bit sequence is not “sufficiently random”:

• 0000..., 010101...,
• the default output of rand(),
• the binary representation of special numbers: π, e, π/2, ϕ.

• Carefully handle the case where n is smaller than the length of the chosen sequence!

Statistics: 148 submissions, 39 accepted, 67 unknown

G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Pitfalls

• The chosen bit sequence is not sufficiently long: De Bruijn sequences cover all 15-bit patterns..
• The chosen bit sequence is not “sufficiently random”:

• 0000..., 010101...,
• the default output of rand(),
• the binary representation of special numbers: π, e, π/2, ϕ.

• Carefully handle the case where n is smaller than the length of the chosen sequence!

Statistics: 148 submissions, 39 accepted, 67 unknown

K: Kebab Pizza
Problem Author: Wendy Yi

Problem
Spread a number of pizza toppings around a circular pizza such that:

• each pizza topping only appears on some consecutive segment of the slices,
• there are at most two toppings on each slice, and
• the topping combinations match with a given list of preferences.

K: Kebab Pizza
Problem Author: Wendy Yi

Problem
Spread a number of pizza toppings around a circular pizza such that:

• each pizza topping only appears on some consecutive segment of the slices,
• there are at most two toppings on each slice, and
• the topping combinations match with a given list of preferences.

1

5 6

3

2

4

Insight
Model the problem as a graph, with the toppings as nodes and the topping combinations as edges.

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
If any node has at least 3 non-leaf neighbours, then the answer is impossible:

• Suppose 1 has neighbours 2, 3 and 4, which each have a neighbour other than 1.

• There are slices (1, 2), (1, 3), (1, 4) and (2, x), (3, y), (4, z) with 1 /∈ {x , y , z}.
• Place the slices (1, 2), (1, 3), (1, 4) somewhere on the pizza.
• Slices (2, x), (3, y), (4, z) go somewhere between these ⇝ no consecutive range of 1’s possible.

1

2

3 4

1 2

1 3

1 4

1

2

1
3

1
4

2 x

3 y

4 z

2
x

3

y

4

z

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
If any node has at least 3 non-leaf neighbours, then the answer is impossible:

• Suppose 1 has neighbours 2, 3 and 4, which each have a neighbour other than 1.
• There are slices (1, 2), (1, 3), (1, 4) and (2, x), (3, y), (4, z) with 1 /∈ {x , y , z}.

• Place the slices (1, 2), (1, 3), (1, 4) somewhere on the pizza.
• Slices (2, x), (3, y), (4, z) go somewhere between these ⇝ no consecutive range of 1’s possible.

1

2

3 4

1 2

1 3

1 4

1

2

1
3

1
4

2 x

3 y

4 z

2
x

3

y

4

z

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
If any node has at least 3 non-leaf neighbours, then the answer is impossible:

• Suppose 1 has neighbours 2, 3 and 4, which each have a neighbour other than 1.
• There are slices (1, 2), (1, 3), (1, 4) and (2, x), (3, y), (4, z) with 1 /∈ {x , y , z}.
• Place the slices (1, 2), (1, 3), (1, 4) somewhere on the pizza.

• Slices (2, x), (3, y), (4, z) go somewhere between these ⇝ no consecutive range of 1’s possible.

1

2

3 4

1 2

1 3

1 4

1

2

1
3

1
4

2 x

3 y

4 z

2
x

3

y

4

z

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
If any node has at least 3 non-leaf neighbours, then the answer is impossible:

• Suppose 1 has neighbours 2, 3 and 4, which each have a neighbour other than 1.
• There are slices (1, 2), (1, 3), (1, 4) and (2, x), (3, y), (4, z) with 1 /∈ {x , y , z}.
• Place the slices (1, 2), (1, 3), (1, 4) somewhere on the pizza.
• Slices (2, x), (3, y), (4, z) go somewhere between these ⇝ no consecutive range of 1’s possible.

1

2

3 4

1 2

1 3

1 4

1

2

1
3

1
4

2 x

3 y

4 z

2
x

3

y

4

z

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

• Find all components and determine whether they are cycles or paths, e.g. by counting nodes,
edges and loops.

• Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.
• The answer is possible iff the graph is connected or all components are paths.
• Potential pitfalls: isolated vertices, paths of length 1, cycles of length 1, duplicate edges. . .

Statistics: 155 submissions, 13 accepted, 90 unknown

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

• Find all components and determine whether they are cycles or paths, e.g. by counting nodes,
edges and loops.

• Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.
• The answer is possible iff the graph is connected or all components are paths.
• Potential pitfalls: isolated vertices, paths of length 1, cycles of length 1, duplicate edges. . .

Statistics: 155 submissions, 13 accepted, 90 unknown

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

• Find all components and determine whether they are cycles or paths, e.g. by counting nodes,
edges and loops.

• Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.

• The answer is possible iff the graph is connected or all components are paths.
• Potential pitfalls: isolated vertices, paths of length 1, cycles of length 1, duplicate edges. . .

Statistics: 155 submissions, 13 accepted, 90 unknown

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

• Find all components and determine whether they are cycles or paths, e.g. by counting nodes,
edges and loops.

• Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.
• The answer is possible iff the graph is connected or all components are paths.

• Potential pitfalls: isolated vertices, paths of length 1, cycles of length 1, duplicate edges. . .

Statistics: 155 submissions, 13 accepted, 90 unknown

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

• Find all components and determine whether they are cycles or paths, e.g. by counting nodes,
edges and loops.

• Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.
• The answer is possible iff the graph is connected or all components are paths.
• Potential pitfalls: isolated vertices, paths of length 1, cycles of length 1, duplicate edges. . .

Statistics: 155 submissions, 13 accepted, 90 unknown

K: Kebab Pizza
Problem Author: Wendy Yi

Solution
Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

• Find all components and determine whether they are cycles or paths, e.g. by counting nodes,
edges and loops.

• Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.
• The answer is possible iff the graph is connected or all components are paths.
• Potential pitfalls: isolated vertices, paths of length 1, cycles of length 1, duplicate edges. . .

Statistics: 155 submissions, 13 accepted, 90 unknown

L: Last Guess
Problem Author: Paul Wild

Problem
Given a game of Wordle with a word of length ℓ and g guesses with g − 1 guesses already made, find
a valid final guess.

Observations

• What can we learn from an existing guess?

• Green position: given letter is at that position.
• Yellow or gray position: given letter is not at that position.
• A letter appears in the solution at least as often as the maximum number of green + yellow positions.
• If that letter also appears in a gray position, it appears in the solution exactly as often as the

maximum number of green + yellow positions.

• So, for each letter, we have
• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower and upper bound on the number of appearances.

• How to find a word satisfying these requirements?

L: Last Guess
Problem Author: Paul Wild

Problem
Given a game of Wordle with a word of length ℓ and g guesses with g − 1 guesses already made, find
a valid final guess.

Observations

• What can we learn from an existing guess?

• Green position: given letter is at that position.
• Yellow or gray position: given letter is not at that position.
• A letter appears in the solution at least as often as the maximum number of green + yellow positions.
• If that letter also appears in a gray position, it appears in the solution exactly as often as the

maximum number of green + yellow positions.
• So, for each letter, we have

• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower and upper bound on the number of appearances.

• How to find a word satisfying these requirements?

L: Last Guess
Problem Author: Paul Wild

Problem
Given a game of Wordle with a word of length ℓ and g guesses with g − 1 guesses already made, find
a valid final guess.

Observations

• What can we learn from an existing guess?
• Green position: given letter is at that position.

• Yellow or gray position: given letter is not at that position.
• A letter appears in the solution at least as often as the maximum number of green + yellow positions.
• If that letter also appears in a gray position, it appears in the solution exactly as often as the

maximum number of green + yellow positions.
• So, for each letter, we have

• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower and upper bound on the number of appearances.

• How to find a word satisfying these requirements?

L: Last Guess
Problem Author: Paul Wild

Problem
Given a game of Wordle with a word of length ℓ and g guesses with g − 1 guesses already made, find
a valid final guess.

Observations

• What can we learn from an existing guess?
• Green position: given letter is at that position.
• Yellow or gray position: given letter is not at that position.

• A letter appears in the solution at least as often as the maximum number of green + yellow positions.
• If that letter also appears in a gray position, it appears in the solution exactly as often as the

maximum number of green + yellow positions.
• So, for each letter, we have

• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower and upper bound on the number of appearances.

• How to find a word satisfying these requirements?

L: Last Guess
Problem Author: Paul Wild

Problem
Given a game of Wordle with a word of length ℓ and g guesses with g − 1 guesses already made, find
a valid final guess.

Observations

• What can we learn from an existing guess?
• Green position: given letter is at that position.
• Yellow or gray position: given letter is not at that position.
• A letter appears in the solution at least as often as the maximum number of green + yellow positions.

• If that letter also appears in a gray position, it appears in the solution exactly as often as the
maximum number of green + yellow positions.

• So, for each letter, we have
• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower and upper bound on the number of appearances.

• How to find a word satisfying these requirements?

L: Last Guess
Problem Author: Paul Wild

Problem
Given a game of Wordle with a word of length ℓ and g guesses with g − 1 guesses already made, find
a valid final guess.

Observations

• What can we learn from an existing guess?
• Green position: given letter is at that position.
• Yellow or gray position: given letter is not at that position.
• A letter appears in the solution at least as often as the maximum number of green + yellow positions.
• If that letter also appears in a gray position, it appears in the solution exactly as often as the

maximum number of green + yellow positions.

• So, for each letter, we have
• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower and upper bound on the number of appearances.

• How to find a word satisfying these requirements?

L: Last Guess
Problem Author: Paul Wild

Problem
Given a game of Wordle with a word of length ℓ and g guesses with g − 1 guesses already made, find
a valid final guess.

Observations

• What can we learn from an existing guess?
• Green position: given letter is at that position.
• Yellow or gray position: given letter is not at that position.
• A letter appears in the solution at least as often as the maximum number of green + yellow positions.
• If that letter also appears in a gray position, it appears in the solution exactly as often as the

maximum number of green + yellow positions.
• So, for each letter, we have

• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower and upper bound on the number of appearances.

• How to find a word satisfying these requirements?

L: Last Guess
Problem Author: Paul Wild

Problem
Given a game of Wordle with a word of length ℓ and g guesses with g − 1 guesses already made, find
a valid final guess.

Observations

• What can we learn from an existing guess?
• Green position: given letter is at that position.
• Yellow or gray position: given letter is not at that position.
• A letter appears in the solution at least as often as the maximum number of green + yellow positions.
• If that letter also appears in a gray position, it appears in the solution exactly as often as the

maximum number of green + yellow positions.
• So, for each letter, we have

• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower and upper bound on the number of appearances.

• How to find a word satisfying these requirements?

L: Last Guess
Problem Author: Paul Wild

Observations

• For each letter ℓ, we have
• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower bound lℓ and upper bound uℓ on the number of appearances.

Solution

• First, consider simplified version where lℓ = 0 for all ℓ.
• Solvable using max-flow

• Green positions: single incoming edge.
• Otherwise: incoming edge for every possible character.

s

a

b

c

d
...

ua

ub

uc
ud

1

2

3

4
...

t

1
1

1
1

L: Last Guess
Problem Author: Paul Wild

Observations

• For each letter ℓ, we have
• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower bound lℓ and upper bound uℓ on the number of appearances.

Solution

• First, consider simplified version where lℓ = 0 for all ℓ.

• Solvable using max-flow
• Green positions: single incoming edge.
• Otherwise: incoming edge for every possible character.

s

a

b

c

d
...

ua

ub

uc
ud

1

2

3

4
...

t

1
1

1
1

L: Last Guess
Problem Author: Paul Wild

Observations

• For each letter ℓ, we have
• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower bound lℓ and upper bound uℓ on the number of appearances.

Solution

• First, consider simplified version where lℓ = 0 for all ℓ.
• Solvable using max-flow

• Green positions: single incoming edge.
• Otherwise: incoming edge for every possible character.

s

a

b

c

d
...

ua

ub

uc
ud

1

2

3

4
...

t

1
1

1
1

L: Last Guess
Problem Author: Paul Wild

Solution

• Multiple ways to extend this to
arbitrary lower bounds.

• If you have the code: min-cost
max-flow.

• Also possible: more clever max-flow
modelling.

• Edge from s to a letter ℓ has
capacity lℓ;

• Edge from s′ to a letter ℓ has
capacity uℓ − lℓ.

s

s’

a

b

c

d
...

n −
∑

ℓ
lℓ

1

2

3

4
...

t

1
1

1
1

L: Last Guess
Problem Author: Paul Wild

Solution

• Multiple ways to extend this to
arbitrary lower bounds.

• If you have the code: min-cost
max-flow.

• Also possible: more clever max-flow
modelling.

• Edge from s to a letter ℓ has
capacity lℓ;

• Edge from s′ to a letter ℓ has
capacity uℓ − lℓ.

s

s’

a

b

c

d
...

n −
∑

ℓ
lℓ

1

2

3

4
...

t

1
1

1
1

L: Last Guess
Problem Author: Paul Wild

Solution

• Multiple ways to extend this to
arbitrary lower bounds.

• If you have the code: min-cost
max-flow.

• Also possible: more clever max-flow
modelling.

• Edge from s to a letter ℓ has
capacity lℓ;

• Edge from s′ to a letter ℓ has
capacity uℓ − lℓ.

s

s’

a

b

c

d
...

n −
∑

ℓ
lℓ

1

2

3

4
...

t

1
1

1
1

L: Last Guess
Problem Author: Paul Wild

Solution

• Multiple ways to extend this to
arbitrary lower bounds.

• If you have the code: min-cost
max-flow.

• Also possible: more clever max-flow
modelling.

• Edge from s to a letter ℓ has
capacity lℓ;

• Edge from s′ to a letter ℓ has
capacity uℓ − lℓ.

s

s’

a

b

c

d
...

n −
∑

ℓ
lℓ

1

2

3

4
...

t

1
1

1
1

Statistics: 82 submissions, 4 accepted, 57 unknown

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3),
• Even rounds: Sort pairs (a1, a2), (a3, a4),

Observations

• Naive solution: simulating O(n) steps takes O(n2) time.
• Say the last swap is (x , y).
• Replacing ai ≤ x by 0 and ai > x by 1 gives an input that takes the same number of iterations.
• Idea: incrementally solve this 01-instance for every x = ai and take the maximum.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3),
• Even rounds: Sort pairs (a1, a2), (a3, a4),

Observations

• Naive solution: simulating O(n) steps takes O(n2) time.

• Say the last swap is (x , y).
• Replacing ai ≤ x by 0 and ai > x by 1 gives an input that takes the same number of iterations.
• Idea: incrementally solve this 01-instance for every x = ai and take the maximum.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3),
• Even rounds: Sort pairs (a1, a2), (a3, a4),

Observations

• Naive solution: simulating O(n) steps takes O(n2) time.
• Say the last swap is (x , y).

• Replacing ai ≤ x by 0 and ai > x by 1 gives an input that takes the same number of iterations.
• Idea: incrementally solve this 01-instance for every x = ai and take the maximum.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3),
• Even rounds: Sort pairs (a1, a2), (a3, a4),

Observations

• Naive solution: simulating O(n) steps takes O(n2) time.
• Say the last swap is (x , y).
• Replacing ai ≤ x by 0 and ai > x by 1 gives an input that takes the same number of iterations.

• Idea: incrementally solve this 01-instance for every x = ai and take the maximum.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3),
• Even rounds: Sort pairs (a1, a2), (a3, a4),

Observations

• Naive solution: simulating O(n) steps takes O(n2) time.
• Say the last swap is (x , y).
• Replacing ai ≤ x by 0 and ai > x by 1 gives an input that takes the same number of iterations.
• Idea: incrementally solve this 01-instance for every x = ai and take the maximum.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

...X.XXX.X.XXX..

..X.X.XXX.X.XX..

.X.X.X.XXX.X.X..
X.X.X.X.XXX.X...
XX.X.X.X.XXX....
XXX.X.X.X.XX....
XXXX.X.X.X.X....
XXXXX.X.X.X.....
XXXXXX.X.X......
XXXXXXX.X.......
XXXXXXXX........

Solution for 01-instance

• 0s move left, 1s move right.

• The rightmost 0 is the last 0 to be fixed.
• A 0 is congested when blocked by another 0.
• For each unfixed 0, the total time is at least:

• The time to fix this 0 fixed assuming no congestion, plus
• the number of 0s after it, since at most one 0 can be fixed in each iteration.

• The maximum over all unfixed 0s is the answer.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

...X.XXX.X.XXX..

..X.X.XXX.X.XX..

.X.X.X.XXX.X.X..
X.X.X.X.XXX.X...
XX.X.X.X.XXX....
XXX.X.X.X.XX....
XXXX.X.X.X.X....
XXXXX.X.X.X.....
XXXXXX.X.X......
XXXXXXX.X.......
XXXXXXXX........

Solution for 01-instance

• 0s move left, 1s move right.
• The rightmost 0 is the last 0 to be fixed.

• A 0 is congested when blocked by another 0.
• For each unfixed 0, the total time is at least:

• The time to fix this 0 fixed assuming no congestion, plus
• the number of 0s after it, since at most one 0 can be fixed in each iteration.

• The maximum over all unfixed 0s is the answer.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

...X.XXX.X.XXX..

..X.X.XXX.X.XX..

.X.X.X.XXX.X.X..
X.X.X.X.XXX.X...
XX.X.X.X.XXX....
XXX.X.X.X.XX....
XXXX.X.X.X.X....
XXXXX.X.X.X.....
XXXXXX.X.X......
XXXXXXX.X.......
XXXXXXXX........

Solution for 01-instance

• 0s move left, 1s move right.
• The rightmost 0 is the last 0 to be fixed.
• A 0 is congested when blocked by another 0.

• For each unfixed 0, the total time is at least:
• The time to fix this 0 fixed assuming no congestion, plus
• the number of 0s after it, since at most one 0 can be fixed in each iteration.

• The maximum over all unfixed 0s is the answer.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

...X.XXX.X.XXX..

..X.X.XXX.X.XX..

.X.X.X.XXX.X.X..
X.X.X.X.XXX.X...
XX.X.X.X.XXX....
XXX.X.X.X.XX....
XXXX.X.X.X.X....
XXXXX.X.X.X.....
XXXXXX.X.X......
XXXXXXX.X.......
XXXXXXXX........

Solution for 01-instance

• 0s move left, 1s move right.
• The rightmost 0 is the last 0 to be fixed.
• A 0 is congested when blocked by another 0.
• For each unfixed 0, the total time is at least:

• The time to fix this 0 fixed assuming no congestion, plus
• the number of 0s after it, since at most one 0 can be fixed in each iteration.

• The maximum over all unfixed 0s is the answer.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

...X.XXX.X.XXX..

..X.X.XXX.X.XX..

.X.X.X.XXX.X.X..
X.X.X.X.XXX.X...
XX.X.X.X.XXX....
XXX.X.X.X.XX....
XXXX.X.X.X.X....
XXXXX.X.X.X.....
XXXXXX.X.X......
XXXXXXX.X.......
XXXXXXXX........

Solution for 01-instance

• 0s move left, 1s move right.
• The rightmost 0 is the last 0 to be fixed.
• A 0 is congested when blocked by another 0.
• For each unfixed 0, the total time is at least:

• The time to fix this 0 fixed assuming no congestion, plus
• the number of 0s after it, since at most one 0 can be fixed in each iteration.

• The maximum over all unfixed 0s is the answer.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3),
• Even rounds: Sort pairs (a1, a2), (a3, a4),

Solution

• Incrementally solve all 01-instances for increasing x .

• Use a segment tree1 to efficiently query the maximum time.
• Incrementally update it for every 0 that changes to a 1.

Statistics: 42 submissions, 0 accepted, 17 unknown

1Check the README for details.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3),
• Even rounds: Sort pairs (a1, a2), (a3, a4),

Solution

• Incrementally solve all 01-instances for increasing x .
• Use a segment tree1 to efficiently query the maximum time.

• Incrementally update it for every 0 that changes to a 1.

Statistics: 42 submissions, 0 accepted, 17 unknown

1Check the README for details.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3),
• Even rounds: Sort pairs (a1, a2), (a3, a4),

Solution

• Incrementally solve all 01-instances for increasing x .
• Use a segment tree1 to efficiently query the maximum time.
• Incrementally update it for every 0 that changes to a 1.

Statistics: 42 submissions, 0 accepted, 17 unknown

1Check the README for details.

A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3),
• Even rounds: Sort pairs (a1, a2), (a3, a4),

Solution

• Incrementally solve all 01-instances for increasing x .
• Use a segment tree1 to efficiently query the maximum time.
• Incrementally update it for every 0 that changes to a 1.

Statistics: 42 submissions, 0 accepted, 17 unknown

1Check the README for details.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

Observation

• If the solution line has positive slope, then:

• it passes below the top left corners of every rectangle,
• it passes over the bottom right corner of every rectangle.

• For lines with negative slope, something similar holds.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

Observation

• If the solution line has positive slope, then:

• it passes below the top left corners of every rectangle,
• it passes over the bottom right corner of every rectangle.

• For lines with negative slope, something similar holds.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

Observation

• If the solution line has positive slope, then:
• it passes below the top left corners of every rectangle,

• it passes over the bottom right corner of every rectangle.

• For lines with negative slope, something similar holds.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

Observation

• If the solution line has positive slope, then:
• it passes below the top left corners of every rectangle,
• it passes over the bottom right corner of every rectangle.

• For lines with negative slope, something similar holds.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

Observation

• If the solution line has positive slope, then:
• it passes below the top left corners of every rectangle,
• it passes over the bottom right corner of every rectangle.

• For lines with negative slope, something similar holds.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

Observation
Use the upper convex hull of the red points and lower convex hull of the blue points.

• A line that passes in between intersects all rectangles.
• A line inside a convex hull goes above/below a red/blue point.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

Observation
Use the upper convex hull of the red points and lower convex hull of the blue points.

• A line that passes in between intersects all rectangles.

• A line inside a convex hull goes above/below a red/blue point.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

Observation
Use the upper convex hull of the red points and lower convex hull of the blue points.

• A line that passes in between intersects all rectangles.
• A line inside a convex hull goes above/below a red/blue point.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Solution

• First check for lines with positive slope:
• Compute the lower convex hull of all top left corners.
• Compute the upper convex hull of all bottom right corners.
• Check (in linear time) whether these intersect.

• In a similar way, check for lines with negative slope.
• Also check for vertical lines.
• Total running time: O(n log n).

Fun Fact
What is a laser?

We only defined “hull beam”.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Solution

• First check for lines with positive slope:
• Compute the lower convex hull of all top left corners.
• Compute the upper convex hull of all bottom right corners.
• Check (in linear time) whether these intersect.

• In a similar way, check for lines with negative slope.

• Also check for vertical lines.
• Total running time: O(n log n).

Fun Fact
What is a laser?

We only defined “hull beam”.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Solution

• First check for lines with positive slope:
• Compute the lower convex hull of all top left corners.
• Compute the upper convex hull of all bottom right corners.
• Check (in linear time) whether these intersect.

• In a similar way, check for lines with negative slope.
• Also check for vertical lines.

• Total running time: O(n log n).

Fun Fact
What is a laser?

We only defined “hull beam”.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Solution

• First check for lines with positive slope:
• Compute the lower convex hull of all top left corners.
• Compute the upper convex hull of all bottom right corners.
• Check (in linear time) whether these intersect.

• In a similar way, check for lines with negative slope.
• Also check for vertical lines.
• Total running time: O(n log n).

Fun Fact
What is a laser?

We only defined “hull beam”.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Solution

• First check for lines with positive slope:
• Compute the lower convex hull of all top left corners.
• Compute the upper convex hull of all bottom right corners.
• Check (in linear time) whether these intersect.

• In a similar way, check for lines with negative slope.
• Also check for vertical lines.
• Total running time: O(n log n).

Fun Fact
What is a laser?

We only defined “hull beam”.

F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Solution

• First check for lines with positive slope:
• Compute the lower convex hull of all top left corners.
• Compute the upper convex hull of all bottom right corners.
• Check (in linear time) whether these intersect.

• In a similar way, check for lines with negative slope.
• Also check for vertical lines.
• Total running time: O(n log n).

Fun Fact
What is a laser? We only defined “hull beam”.

F: Faster Than Light
Problem Author: Michael Zündorf

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

Statistics: 29 submissions, 0 accepted, 26 unknown

F: Faster Than Light
Problem Author: Michael Zündorf

30 35 40 45 50 55 60 65 70

25

30

35

40

45

Statistics: 29 submissions, 0 accepted, 26 unknown

F: Faster Than Light
Problem Author: Michael Zündorf

2 4 6 8
1e8

2

4

6

8

1e8

Statistics: 29 submissions, 0 accepted, 26 unknown

F: Faster Than Light
Problem Author: Michael Zündorf

2 4 6 8
1e8

4

5

6

7

8

9

1e8

Statistics: 29 submissions, 0 accepted, 26 unknown

F: Faster Than Light
Problem Author: Michael Zündorf

2 4 6 8
1e8

4

5

6

7

8

9

1e8

Statistics: 29 submissions, 0 accepted, 26 unknown

Language stats

C C++ Java Kotlin Python 3
0

100

200

300

400

500
correct
wrong answer
timelimit
run error
pending

Random facts

Jury work

• 720 commits (including test session) (last year: 632)

• 1424 secret test cases (last year: 681) (118 2
3 per problem!)

• 239 jury solutions (last year: 248)
• The minimum2 number of lines the jury needed to solve all problems is

19 + 1 + 6 + 6 + 14 + 22 + 3 + 6 + 2 + 31 + 8 + 45 = 163

On average 13.6 lines per problem, down from 35.5 last year

• Only team ORTEC beat us: they have a submission of 22 lines for Justice Served!

Random facts

Jury work

• 720 commits (including test session) (last year: 632)
• 1424 secret test cases (last year: 681) (118 2

3 per problem!)

• 239 jury solutions (last year: 248)
• The minimum2 number of lines the jury needed to solve all problems is

19 + 1 + 6 + 6 + 14 + 22 + 3 + 6 + 2 + 31 + 8 + 45 = 163

On average 13.6 lines per problem, down from 35.5 last year

• Only team ORTEC beat us: they have a submission of 22 lines for Justice Served!

Random facts

Jury work

• 720 commits (including test session) (last year: 632)
• 1424 secret test cases (last year: 681) (118 2

3 per problem!)
• 239 jury solutions (last year: 248)

• The minimum2 number of lines the jury needed to solve all problems is

19 + 1 + 6 + 6 + 14 + 22 + 3 + 6 + 2 + 31 + 8 + 45 = 163

On average 13.6 lines per problem, down from 35.5 last year

• Only team ORTEC beat us: they have a submission of 22 lines for Justice Served!

Random facts

Jury work

• 720 commits (including test session) (last year: 632)
• 1424 secret test cases (last year: 681) (118 2

3 per problem!)
• 239 jury solutions (last year: 248)
• The minimum2 number of lines the jury needed to solve all problems is

19 + 1 + 6 + 6 + 14 + 22 + 3 + 6 + 2 + 31 + 8 + 45 = 163

On average 13.6 lines per problem, down from 35.5 last year

• Only team ORTEC beat us: they have a submission of 22 lines for Justice Served!

2After code golfing

Random facts

Jury work

• 720 commits (including test session) (last year: 632)
• 1424 secret test cases (last year: 681) (118 2

3 per problem!)
• 239 jury solutions (last year: 248)
• The minimum2 number of lines the jury needed to solve all problems is

19 + 1 + 6 + 6 + 14 + 22 + 3 + 6 + 2 + 31 + 8 + 45 = 163

On average 13.6 lines per problem, down from 35.5 last year

• Only team ORTEC beat us: they have a submission of 22 lines for Justice Served!

2After code golfing

Random facts

Jury dedication

• Most test cases for Faster Than Light were generated after midnight and/or yesterday.

• The 80–20 rule is a thing: 80% of our time is spent on 20% of the problem statement.
• The longest discussions were about tiny style issues like “illustration” vs. “visualisation”.

Random facts

Jury dedication

• Most test cases for Faster Than Light were generated after midnight and/or yesterday.
• The 80–20 rule is a thing: 80% of our time is spent on 20% of the problem statement.

• The longest discussions were about tiny style issues like “illustration” vs. “visualisation”.

Random facts

Jury dedication

• Most test cases for Faster Than Light were generated after midnight and/or yesterday.
• The 80–20 rule is a thing: 80% of our time is spent on 20% of the problem statement.
• The longest discussions were about tiny style issues like “illustration” vs. “visualisation”.

Random facts

014284256708498
Days before contest

Commits (714)
Secret test cases (max: 1424)
Jury submissions (max: 239)

