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I: Interview Question
Problem Author: Paul Wild

Problem
A group of players takes turns counting through the integers from c to d , except that
• each multiple of a is replaced by Fizz

• each multiple of b is replaced by Buzz

• each multiple of both a and b is replaced by FizzBuzz

Given a transcript of the game, reverse engineer the parameters a and b.

Solution

• Find all the positions with Fizz (or FizzBuzz) and all the positions with Buzz (or FizzBuzz),
then solve independently.

• Three cases depending on the number of occurrences:
2 or more ⇝ output the difference between the first two occurrences.

1 ⇝ output the position of that single occurrence.
0 ⇝ output some number past the end of the range.
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Pitfalls
Exceptions in Java are not fast enough. . .

try { int v = Integer.parseInt(s); } catch (NumberFormatException e) { ... }

Statistics: 268 submissions, 136 accepted, 5 unknown
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B: Bottle Flip
Problem Author: Jorke de Vlas

Problem
Given:

• the density da of air and dw of water,
• the radius r and height h of a cylindrical container.

To which height should the cylinder be filled with water to minimise the height of the centre of mass?
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B: Bottle Flip
Problem Author: Jorke de Vlas

Observations

• The radius r is irrelevant.

• The result can be found using ternary search.

Solution

• Given the height hw , calculate ha = h − hw .
• The centre of mass of the water is at height cw = hw

2 .
• The centre of mass of the air is at height ca = h − ha

2 .
• The height of the combined centre of mass is the weighted average:

ca · da · ha + cw · dw · hw

ha · da + hw · dw
.

• Can also be found by differentiating a nasty expression (left as an exercise for the reader).

Statistics: 154 submissions, 100 accepted, 22 unknown
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C: Circular Caramel Cookie
Problem Author: Maarten Sijm

Problem
Given an integer s, output the minimum radius of a circle that contains > s whole unit squares.

5

Solution

• For a fixed radius r , we can determine the number of whole unit squares that fit in the circle.
• Determine how many squares fit in each column using the Pythagorean Theorem. (O(

√
s))

• Use binary search to find the solution. Total time: O(log s ·
√

s).
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Challenge
It is possible in O(

√
s) as well.

Statistics: 298 submissions, 89 accepted, 49 unknown
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D: Delft Distance
Problem Author: Reinier Schmiermann

Problem
Find the shortest path from the north-west to the south-east on a map of Delft with round towers
and square buildings.

Observation
Not all points on the map need to be checked:
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D: Delft Distance
Problem Author: Reinier Schmiermann

Solution 1: Dijkstra

• Turn the map into a graph,
• straight edges are 10 m, and
• round edges are 5π m.

• Running Dijkstra takes O(n log n) time (n = w · h).

Solution 2: Dynamic Programming

• For every blue vertex (left-to-right, then top-to-bottom), take the minimum between
• going straight across (right or down) and
• going across a corner (right-and-down or down-and-right).

• This takes O(n) time (n = w · h).
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E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Observations

• Only edges on an optimal path to vertex 1 are relevant, so without loss of generality the graph is
a tree.

• The exact shape of this tree does not matter, only the number of vertices in each layer.
• Represent the graph as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i ,

satisfying:
• There is only 1 vertex at the root layer, so a0 = 1.
• There can only be vertices at layer x if there are some at layer x − 1, so for every i , ai ≥ 1.
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Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution

• The graph can be represented as a list (a0, a1, . . . , ak) where ai is the number of vertices in layer i .

• Given such a list, construct a graph: vertex 1 is the root, and vertices at layer i have a single
vertex at layer i − 1 as parent.

• The total number of vertices is a0 + a1 + . . . + ak .
• The optimal time for a vertex at layer i is i , so the average optimal time is 0·a0+1·a1+...+k·ak

a0+a1+...+ak
.

• We consider two cases: either a
b < 1 or a

b ≥ 1.
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Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 1: a

b < 1.

• If there is a vertex with optimal time at least 2, then the average optimal time is at least 1. Thus,
such vertices cannot exist.

• The average optimal time is now a1
1+a1

.
• If a = b − 1, we solve the problem with the list (1, a). Otherwise, the answer is impossible.



E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 1: a

b < 1.

• If there is a vertex with optimal time at least 2, then the average optimal time is at least 1. Thus,
such vertices cannot exist.

• The average optimal time is now a1
1+a1

.

• If a = b − 1, we solve the problem with the list (1, a). Otherwise, the answer is impossible.



E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 1: a

b < 1.

• If there is a vertex with optimal time at least 2, then the average optimal time is at least 1. Thus,
such vertices cannot exist.

• The average optimal time is now a1
1+a1

.
• If a = b − 1, we solve the problem with the list (1, a). Otherwise, the answer is impossible.



E: ETA
Problem Author: Paul Wild

Problem

Construct a graph such that the average optimal time to reach vertex 1 is exactly a
b or determine

that this is impossible.

Solution
Case 2: a

b ≥ 1. Define k as ⌊ a
b ⌋.

• Consider a list of length 2k + 1 where every ai is 1 except for ak . We set ak to a value such that
ak > 2k + 1 and the total number of vertices is divisible by b, i.e. n = m · b.

• The average optimal time is k ≤ a
b : all the ones cancel each other out.

• Moving a vertex one layer up increases the average by 1
nb . Moving ( a

b − k) · nb vertices increases it
to a

b .
• Such movements are possible: over half of the vertices is at layer k, so moving those to layer

k + 2 increases the average by 1, which is already too much.

Statistics: 196 submissions, 62 accepted, 67 unknown
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H: High-quality Tree
Problem Author: Michael Zündorf

Problem
Given a binary tree, determine the minimal number of leaves you should remove to make the tree
strongly balanced.

Solution

• Every vertex should be balanced: the height of its left and right subtree should differ by at most
one.

• Naive solution: remove the deepest leaves below vertices that are too high.
• This takes O(n) time per vertex, so too slow.
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J: Justice Served
Problem Author: Michael Zündorf

Problem
Given n intervals Ii = [ℓi , ri ], for each of them find the length v(Ii) of the longest chain
Ii ⊂ Ii1 ⊂ Ii2 ⊂ . . . .

Naive solution

• Ii ⊂ Ij is only possible if ri − ℓi = ti < tj = rj − ℓj .
• Sort by decreasing length and iterate over all longer intervals → O(n2).
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Solution

• Sort by increasing ℓ first, and then decreasing r .

• The value v(Ii) of [ℓi , ri ] is 1 + maxℓj ≤ℓi ,ri ≤rj v(rj).
• Ignore ri if ri < rj and v(Ii) ≤ v(Ij).
• What is left are increasing ri with decreasing v , that can be stored in an ordered set.
• Compute v(Ii) by looking up the first element at least ri .
• Insert v(Ii) into the set and remove new suboptimal points that follow it.
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G: Going in Circles
Problem Author: Timon Knigge

Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.
In each step, you can either:

• move one carriage to the left,
• move one carriage to the right, or
• toggle the light switch in the current carriage.

Solution

• Naive solution: for some x , walk x steps to the right turning everything off, then flip one light
switch, and walk x steps back to see if the light changed somewhere.

• If it did, then you know the length. If not, then try again with a larger x .
• This does not work: for small x , there is a lot of repetition so you need too many queries if n is

large. For large x , you use too many queries if n is small.
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Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Solution

• Alternative solution: use randomization.

• Choose a random sequence of bits of sufficient size (e.g. 25).
• Set the initial 25 bits to the chosen sequence.
• Walk to the right and keep track of the last read 25 bits.
• If the last read bits correspond to the chosen sequence, we assume we made a full round.
• Determine the length of the round using the number of steps made.
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Problem
Determine the number n of train carriages of a circular train using at most 3n + 500 steps.

Pitfalls

• The chosen bit sequence is not sufficiently long: De Bruijn sequences cover all 15-bit patterns..

• The chosen bit sequence is not “sufficiently random”:
• 0000..., 010101...,
• the default output of rand(),
• the binary representation of special numbers: π, e, π/2, ϕ.

• Carefully handle the case where n is smaller than the length of the chosen sequence!

Statistics: 148 submissions, 39 accepted, 67 unknown
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K: Kebab Pizza
Problem Author: Wendy Yi

Problem
Spread a number of pizza toppings around a circular pizza such that:

• each pizza topping only appears on some consecutive segment of the slices,
• there are at most two toppings on each slice, and
• the topping combinations match with a given list of preferences.
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Insight
Model the problem as a graph, with the toppings as nodes and the topping combinations as edges.



K: Kebab Pizza
Problem Author: Wendy Yi

Solution
If any node has at least 3 non-leaf neighbours, then the answer is impossible:

• Suppose 1 has neighbours 2, 3 and 4, which each have a neighbour other than 1.

• There are slices (1, 2), (1, 3), (1, 4) and (2, x), (3, y), (4, z) with 1 /∈ {x , y , z}.
• Place the slices (1, 2), (1, 3), (1, 4) somewhere on the pizza.
• Slices (2, x), (3, y), (4, z) go somewhere between these ⇝ no consecutive range of 1’s possible.
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K: Kebab Pizza
Problem Author: Wendy Yi

Solution
Otherwise, the graph consists of cycles and paths, possibly with extra leaves and self loops:

• Find all components and determine whether they are cycles or paths, e.g. by counting nodes,
edges and loops.

• Remove all degree 0 vertices, corresponding to toppings not wanted by anybody.
• The answer is possible iff the graph is connected or all components are paths.
• Potential pitfalls: isolated vertices, paths of length 1, cycles of length 1, duplicate edges. . .

Statistics: 155 submissions, 13 accepted, 90 unknown
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L: Last Guess
Problem Author: Paul Wild

Problem
Given a game of Wordle with a word of length ℓ and g guesses with g − 1 guesses already made, find
a valid final guess.

Observations

• What can we learn from an existing guess?

• Green position: given letter is at that position.
• Yellow or gray position: given letter is not at that position.
• A letter appears in the solution at least as often as the maximum number of green + yellow positions.
• If that letter also appears in a gray position, it appears in the solution exactly as often as the

maximum number of green + yellow positions.

• So, for each letter, we have
• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower and upper bound on the number of appearances.

• How to find a word satisfying these requirements?
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Observations

• For each letter ℓ, we have
• a list of positions in which it must appear,
• a list of positions in which it must not appear, and
• a lower bound lℓ and upper bound uℓ on the number of appearances.

Solution

• First, consider simplified version where lℓ = 0 for all ℓ.
• Solvable using max-flow

• Green positions: single incoming edge.
• Otherwise: incoming edge for every possible character.
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Solution

• Multiple ways to extend this to
arbitrary lower bounds.

• If you have the code: min-cost
max-flow.

• Also possible: more clever max-flow
modelling.

• Edge from s to a letter ℓ has
capacity lℓ;

• Edge from s′ to a letter ℓ has
capacity uℓ − lℓ.

s

s’

a

b

c

d
...

n −
∑

ℓ
lℓ

1

2

3

4
...

t

1
1

1
1



L: Last Guess
Problem Author: Paul Wild

Solution

• Multiple ways to extend this to
arbitrary lower bounds.

• If you have the code: min-cost
max-flow.

• Also possible: more clever max-flow
modelling.

• Edge from s to a letter ℓ has
capacity lℓ;

• Edge from s′ to a letter ℓ has
capacity uℓ − lℓ.

s

s’

a

b

c

d
...

n −
∑

ℓ
lℓ

1

2

3

4
...

t

1
1

1
1



L: Last Guess
Problem Author: Paul Wild

Solution

• Multiple ways to extend this to
arbitrary lower bounds.

• If you have the code: min-cost
max-flow.

• Also possible: more clever max-flow
modelling.

• Edge from s to a letter ℓ has
capacity lℓ;

• Edge from s′ to a letter ℓ has
capacity uℓ − lℓ.

s

s’

a

b

c

d
...

n −
∑

ℓ
lℓ

1

2

3

4
...

t

1
1

1
1



L: Last Guess
Problem Author: Paul Wild

Solution

• Multiple ways to extend this to
arbitrary lower bounds.

• If you have the code: min-cost
max-flow.

• Also possible: more clever max-flow
modelling.

• Edge from s to a letter ℓ has
capacity lℓ;

• Edge from s′ to a letter ℓ has
capacity uℓ − lℓ.

s

s’

a

b

c

d
...

n −
∑

ℓ
lℓ

1

2

3

4
...

t

1
1

1
1

Statistics: 82 submissions, 4 accepted, 57 unknown



A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson

Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3), . . . .
• Even rounds: Sort pairs (a1, a2), (a3, a4), . . . .

Observations

• Naive solution: simulating O(n) steps takes O(n2) time.
• Say the last swap is (x , y).
• Replacing ai ≤ x by 0 and ai > x by 1 gives an input that takes the same number of iterations.
• Idea: incrementally solve this 01-instance for every x = ai and take the maximum.
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Problem
Given integers a0 to an, how many of the following iterations does it take to sort them:

• Odd rounds: Sort pairs (a0, a1), (a2, a3), . . . .
• Even rounds: Sort pairs (a1, a2), (a3, a4), . . . .

Observations

• Naive solution: simulating O(n) steps takes O(n2) time.

• Say the last swap is (x , y).
• Replacing ai ≤ x by 0 and ai > x by 1 gives an input that takes the same number of iterations.
• Idea: incrementally solve this 01-instance for every x = ai and take the maximum.



A: Alternating Algorithm
Problem Author: Bjarki Ágúst Guðmundsson
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Solution for 01-instance

• 0s move left, 1s move right.

• The rightmost 0 is the last 0 to be fixed.
• A 0 is congested when blocked by another 0.
• For each unfixed 0, the total time is at least:

• The time to fix this 0 fixed assuming no congestion, plus
• the number of 0s after it, since at most one 0 can be fixed in each iteration.

• The maximum over all unfixed 0s is the answer.
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Solution

• Incrementally solve all 01-instances for increasing x .

• Use a segment tree1 to efficiently query the maximum time.
• Incrementally update it for every 0 that changes to a 1.

Statistics: 42 submissions, 0 accepted, 17 unknown

1Check the README for details.
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F: Faster Than Light
Problem Author: Michael Zündorf

Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.
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Observation

• If the solution line has positive slope, then:

• it passes below the top left corners of every rectangle,
• it passes over the bottom right corner of every rectangle.

• For lines with negative slope, something similar holds.
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Observation
Use the upper convex hull of the red points and lower convex hull of the blue points.

• A line that passes in between intersects all rectangles.
• A line inside a convex hull goes above/below a red/blue point.
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Problem
Given n axis-aligned rectangles, determine whether there is a line intersecting or touching all of them.

Solution

• First check for lines with positive slope:
• Compute the lower convex hull of all top left corners.
• Compute the upper convex hull of all bottom right corners.
• Check (in linear time) whether these intersect.

• In a similar way, check for lines with negative slope.
• Also check for vertical lines.
• Total running time: O(n log n).

Fun Fact
What is a laser?

We only defined “hull beam”.
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Random facts

Jury work

• 720 commits (including test session) (last year: 632)

• 1424 secret test cases (last year: 681) (118 2
3 per problem!)

• 239 jury solutions (last year: 248)
• The minimum2 number of lines the jury needed to solve all problems is

19 + 1 + 6 + 6 + 14 + 22 + 3 + 6 + 2 + 31 + 8 + 45 = 163

On average 13.6 lines per problem, down from 35.5 last year

• Only team ORTEC beat us: they have a submission of 22 lines for Justice Served!
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Random facts

Jury dedication

• Most test cases for Faster Than Light were generated after midnight and/or yesterday.

• The 80–20 rule is a thing: 80% of our time is spent on 20% of the problem statement.
• The longest discussions were about tiny style issues like “illustration” vs. “visualisation”.
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Commits (714)
Secret test cases (max: 1424)
Jury submissions (max: 239)


