NWERC 2020 presentation of solutions

NWERC 2020 Jury

- Arnar Bjarni Arnarson
 Reykjavík University
- Per Austrin KTH Royal Institute of Technology
- Jeroen Bransen Chordify
- Alexander Dietsch
 FAU Erlangen-Nürnberg
- Ragnar Groot Koerkamp ETH Zürich
- Bjarki Ágúst Guðmundsson Google
- Nils Gustafsson KTH Royal Institute of Technology

- Timon Knigge ETH Zürich
- Robin Lee Google
- Pehr Söderman Kattis
- Jorke de Vlas Utrecht University
- Mees de Vries University of Amsterdam
- Paul Wild FAU Erlangen-Nürnberg

Big thanks to our test solvers

- Bernhard Linn Hilmarsson ETH Zürich
- Tómas Ken Magnússon Google

• Ludo Pulles

Leiden University

- Bergur Snorrason University of Iceland
- Tobias Werth

Google

Problem

Given are two strings, where some characters are duplicated in the second string. Find the duplicated characters.

Solution

- For each of the possible 27 characters, count how often they appear in both strings.
- Output all characters where the counts differ.

Python solution

 $\begin{array}{l} A = input() \\ B = input() \\ print(``.join(x \ for x \ in \ map(chr, \ range(32, \ 127)) \ if \ A.count(x) < B.count(x))) \end{array}$

Statistics: 200 submissions, 118 + ? accepted

For *n* numbers between 0 and 100 you are given the average of all numbers (*d*), and the average of a subset of *k* of those numbers (*s*). Compute the average of the remaining numbers.

Solution

- The sum of all numbers is $d \cdot n$.
- So the sum of the remaining numbers is $d \cdot n s \cdot k$.
- That parts contains n k numbers, so the average of those numbers is $(d \cdot n s \cdot k)/(n k)$.
- When the average is < 0 or > 100, print impossible.

Gotchas

• Precision issues, e.g. answers just below 0 or just above 100

Statistics: 180 submissions, 118 + ? accepted

Permute a list of n integers ($n \le 10^5$) such that for each $2 \le i \le n-1$ it holds that $|t'_{i-1} - t'_i| \le |t'_i - t'_{i+1}|$.

Solution

- Sort the array.
- The largest possible value of $|t_x t_y|$ is $\max(t) \min(t)$.
- Put max(t) in the *n*th place and min(t) in the *n* 1th place. It is guaranteed that no other difference will be larger.
- Repeat the same logic with the last two elements fixed and t' as the remaining elements.
- Now the largest value of $|t_x t_y|$ is $\max(t') \min(t)$. Put $\max(t')$ in the n 2nd place.
- Continue, alternating between min and max of the remaining elements.

Gotchas

• Not sorting the array in advance.

Statistics: 199 submissions, 114 + ? accepted

Find the seven Dragon Balls in the 2D plane. A radar interactively tells you the distances from query points to the closest balls. Balls disappear once found. You may use the radar at most 1 000 times.

Solution Type 1 – Local Search

Pick a random starting point and home in on one of the balls. Repeat.

Solution Type 2 – Search Space Partitioning

Use some kind of binary search / ternary search / quadtree.

والمهام والمحادث والمتحالي والمحادث والمحادث

Solution Type 3 - Circle Intersections

Any two adjacent points will have the same closest ball with high probability. Query the two points, then query the intersection point of the two circles.

Solution Type 4 – Sum of Squares

Query a random point. Then try all integer points at the given distance.

Gotchas

• Asking more queries after all balls have been found.

Statistics: 337 submissions, 70 + ? accepted

Given are the '*explodification*' rules for an atom with a certain amount of neutrons:

- An atom with $k \leq n$ neutrons will be converted into a_k units of energy.
- An atom with k > n will be decomposed into parts i, j ≥ 1 with i + j = k, which are then
 recursively explodificated.

Given an atom with a fixed number of neutrons, what is the minimum energy released?

Observations

Since the decomposition is arbitrary, we have to assume the worst case – for k > n define:

$$a_k := \min_{1 \le i \le k-1} a_i + a_{k-i}.$$

There are upto 10^5 queries with k upto 10^9 , so we cannot naively compute all values a_i upto this maximum. Naive computation requires $O(k^2)$ time for the first k values.

Observation 1

Our first crucial observation is that optimal solutions have a recursive structure. We can write any explodification sequence as a binary tree. This is the first sample, k = 8:

Recall this sample had $a_{1,...,4} = \{2, 3, 5, 7\}.$

Observation 1

For a given query k, imagine recursively following the decomposition $a_k = a_i + a_{k-i}$ until we end up with a decomposition:

$$a_k = \sum_{j=1}^m a_{i_j}$$
 subj. to $k = \sum_{j=1}^m i_j$, with $i_j \in \{1, \ldots, n\}$.

So the leaves of the decomposition tree are a collection of indices i_j that sum to k. Is any decomposition (i_j) satisfying the right hand side realizable?

No – to actually construct this explodification sequence we need to end with some a_x, a_y with x + y > n. If $x + y \le n$, there is no guarantee that $a_{x+y} = a_x + a_y$. (Example: for $n \gg 1$, a sequence of all a_1 's is generally impossible.)

A sequence is *realizable* if it contains two x, y with x + y > n. After that, we can 'add' new atoms a_{ij} inductively to construct the explodification tree. In fact any 'prefix' of such a sequence is optimal.

Faster computation

Now we can improve the computation of the first k values from $O(k^2)$ to O(nk):

$$a_k = \min_{1 \le i \le n} a_i + a_{k-i}.$$

Of course this is still not fast enough with k upto 10^9 .

Observation 2

Let $m \in \{1, ..., n\}$ minimize a_m/m . When a query k is large enough, most of the terms in the decomposition will be a_m . Indeed, if after removing the two distinguished values a_x , a_y from the sequence we still have m or more values in the tree that are not a_m , by the pigeonhole principle there must be a subset of them that have indices that sum up to a multiple of m, and we can replace them by a_m 's to get a decomposition that is not worse.

Hence, any decomposition can be written in such a way that there are at most m + 1 terms that are not a_m . In fact we can rearrange the sequence to have these terms in the front, and then fill in the gap with a_m -terms.

Full solution

Let *m* minimize a_i/i over all $i \in \{1, ..., n\}$, and use the O(nk) algorithm from earlier to construct the first (m+1)n terms in time $O(n^3)$.

For each query k, find the smallest $j \ge 0$ such that $k - jm \in \{1, ..., (m+1)n\}$, and output with $a_{k-jm} + j \cdot a_m$.

Final runtime $O(n^3 + q)$. Efficient implementations of e.g. $O(n^4 + q)$ could also work.

Statistics: 421 submissions, 51 + ? accepted

Some drones are flying along a straight line at constant speed. Simulate the crashes and report the survivors.

Insight

At any moment, the next crash is going to be between two adjacent drones.

Solution

- Maintain a set of potential crash events, sorted by time.
- The crash times can be found by solving linear equations.
- When processing a crash, add a new event for the two drones that become adjacent.
- Time complexity: $\mathcal{O}(n \log n)$.

Gotchas

- Use fractions or long double to avoid precision errors.
- Only consider crashes at times t > 0.

Statistics: 421 submissions, 46 + ? accepted

Given the location of a piece on an $n \times n$ playing board and n types of moves ($n \le 10^5$). Find a position on the board that the piece cannot reach within two moves.

Solution

- Simpler question: Given a specific position, can the piece reach that position within two moves?
 - BFS/DFS will take $O(n^2)$ time, which is too slow.
 - Bidirectional search:
 - F: the set of positions that the piece can reach within one move.
 - *B*: the set of positions that can reach the target position within one move.
 - F and B intersect iff. the piece can reach the position within two moves.
 - These sets can be constructed and intersected in $O(n \log n)$ time.
- Asking this question for all n^2 positions on the board is way too slow.
 - Do we have to try all of them?

Solution

- In the worst case, the piece can reach at most approx. $n^2/2$ positions on the board within two moves.
- If we pick a random position on the board, the piece can reach that position within two moves with probability at most 1/2.
 - Repeating this k times, the probability that the piece can reach all of them within two moves is at most $1/2^k$, which quickly tends to 0.
- Run bidirectional search on 30 random positions.

Gotchas

- The piece is not allowed to move off the playing board.
- When $n \in \{2, 3\}$, the piece may be able to reach all the positions within two moves.

Statistics: 210 submissions, 37 + ? accepted

Three people start in three places on a cycle graph and walk around according to a timer. Where can you place them so that they won't ever be in the same place at the same time?

Solution

- A simple solution tries all $O(n^3)$ placements for Tijmen, Annemarie, and Imme and then simulates the O(n) steps recording when each person arrives and departs at the nodes to compare with the others for overlap.
- However, $O(n^4)$ is too slow. We need to do some pre-calculation.
- Conflicts are between two people rather than three. We only need to answer the question does_intersect(*a*, *b*, *s*_{*a*}, *s*_{*b*}) for each pair of people *a* and *b*.
- So, for each pair of people a and b, try all O(n²) combinations and run the O(n) simulation.
 Store the result in a table compatible[a][b][x][y] for later.
- Using the table, we can try all $O(n^3)$ possibilities in O(1) time each. This is fast enough.

أنه بلايته وروبيا والمعاصف ويعرطونه المراقي

Statistics: 113 submissions, 36 + ? accepted

Determine the most efficient method to break the record in a speedrun. You may reset at any point.

Insights

```
During a run, you have r - n - 1 time margin to make errors.
```

Optimally, the only place where you reset is immediately after failing a trick.

Solution attempt

- Use dynamic programming!
- DP[i, j] := the expected time until a record when you are just before trick *i* and have used *j* margin for error. We are interested in DP[0, 0].

للعريد أفريح والمرورية كالمحاصر

- When you complete trick *i*, the rest of the run takes $(t_{i+1} t_i) + DP[i+1,j]$ time.
- When you fail the trick, you either reset (taking DP[0,0] time) or continue (taking d_i + (t_{i+1} t_i) + DP[i + 1, j + d_i] time).
- This gives a DP relation:

$$DP[i,j] = \begin{array}{cc} p_i & \cdot & ((t_{i+1} - t_i) + DP[i+1,j]) + \\ (1 - p_i) & \cdot & \min(DP[0,0], d_i + (t_{i+1} - t_i) + DP[i+1,j+d_i]) \end{array}$$

• We can use DP[m][j] = 0 as the base cases for the DP.

We now have a DP relation, but we need to know DP[0,0] in order to use it.

Solution

• Consider making some guess P for the value of DP[0,0]. We can use this value to fill the DP table.

للمعارف ويربين بتهريه كالمراجع

- When the resulting *DP*[0,0] is larger than *P*, the guess was too low. When *DP*[0,0] is smaller than *P*, the guess was too high.
- Use binary search to determine the optimal value of P, and thus the actual value of DP[0,0].

Statistics: 61 submissions, 8 + ? accepted

A connected graph is to be split into multiple connected components by a non-self-intersecting path. The components are then to be distributed into two groups A and B such that the number of nodes in both groups are the same.

Find a path and distribution that satisfy these requirements.

Solution

- Assign each node to group A.
- Run a Depth-First-Search starting at any node.
- Whenever the DFS visits a new node N, remove N from A and add it to the path.
- Whenever the DFS backtracks from node N^* , remove N^* from the path and add it to B.
- Repeat until |A| = |B|.
- The DFS guarantees that A and B never have neighbouring nodes.

Given a row of stack of blocks, how many 'bulldoze' operations are needed to level all the blocks.

Observations

- Each block can be 'buried' in two moves: push the bottom of the stack right, push the block left.
- It's never worse to do all burying operations at the end.
- All other blocks that start non-grounded end at an initially empty stack.
- Number the non-grounded blocks from left to right, where each stack is numbered bottom to top.
- The final solution has stretches of blocks that move left, stretches of blocks that move right, mixed with stretches of blocks that are buried.
- We have infinite space on the left and right, and the stretches of blocks that go there contain full stacks of blocks only.

.

.

Solution

- Make a weighted directed graph on the initial state of the blocks, with a start vertex on the far left and an end vertex on the far right. The shortest path will be the answer.
- For each empty stack S, find the block X that would end there when moving blocks from the left. Add an edge from X to S of cost K, the required number of moves for this.
- Similarly, find the block Y that would end at S when moving blocks from the right. Add an edge from S to Y of cost K.
- When block X ends in empty stack Y after K moves, all blocks in between are already levelled.
- Add an edge from the start vertex to the top of each stack: the cost of moving all in between blocks left.
- Add an edge from the bottom of each stack to the end vertex: the cost of moving all in between blocks right.
- For burying, add an edge between consecutive blocks of cost 2, but merge adjacent edges when possible to prevent adding $2 \cdot 10^{14}$ edges.

Statistics: 12 submissions, 0 + ? accepted

Jury work

- 616 git commits.
- 252 jury solutions with 11577 lines in total, about 46 lines on average.
- The number of lines the jury needed to solve all problems is

12 + 44 + 5 + 26 + 24 + 33 + 16 + 5 + 20 + 31 + 4 = 220

On average 20 lines per problem.

- 682 test cases, on average 46 per problem.
- Last test cases added yesterday evening, at least 2 submissions failed on only those.

Random facts

Timelimits

• Just lucky:

• Just unlucky (different problem and team):

