
NCNA 2017 Solution Slides

NCNA Judges

NCNA Judges NCNA 2017 Solution Slides 1 / 27

Problem Set Developers

Dr. Larry Pyeatt (Chief Judge)

Bryce Sandlund (Associate Chief Judge)

Robert Hochberg

Bowen Yu

Bruce Elenbogen

Ivor Page

Antonio Molina

Menghui Wang

Andrew Morgan

ECNA 2017 Developers (IsaHasa and Sheba’s Amoeba’s), specifically
John Bonomo and Bob Roos

The Kattis Team, specifically Greg Hamerly and Fredrik Niemela

NWERC and SWERC, to which these slides were modeled off of

NCNA Judges NCNA 2017 Solution Slides 2 / 27

H - Zebras and Ocelots

Problem

Given a vertical stack of Zebras (Z’s) and Ocelots (O’s), determine how
many steps until they all turn into Z’s, given that at each step, the lowest
O turns into a Z, and all Z’s below it turn into O’s.

Solution

Interpret each O as a 1 and each Z as a 0. Then the operation is just
“subtract 1” in binary.

The answer is the decimal value of the given binary string.

Pitfalls

Simulation gets TLE.

Need to use 64-bit integers.

Statistics: 824 submissions, 112 accepted.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 3 / 27

H - Zebras and Ocelots

Problem

Given a vertical stack of Zebras (Z’s) and Ocelots (O’s), determine how
many steps until they all turn into Z’s, given that at each step, the lowest
O turns into a Z, and all Z’s below it turn into O’s.

Solution

Interpret each O as a 1 and each Z as a 0. Then the operation is just
“subtract 1” in binary.

The answer is the decimal value of the given binary string.

Pitfalls

Simulation gets TLE.

Need to use 64-bit integers.

Statistics: 824 submissions, 112 accepted.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 3 / 27

H - Zebras and Ocelots

Problem

Given a vertical stack of Zebras (Z’s) and Ocelots (O’s), determine how
many steps until they all turn into Z’s, given that at each step, the lowest
O turns into a Z, and all Z’s below it turn into O’s.

Solution

Interpret each O as a 1 and each Z as a 0. Then the operation is just
“subtract 1” in binary.

The answer is the decimal value of the given binary string.

Pitfalls

Simulation gets TLE.

Need to use 64-bit integers.

Statistics: 824 submissions, 112 accepted.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 3 / 27

H - Zebras and Ocelots

Problem

Given a vertical stack of Zebras (Z’s) and Ocelots (O’s), determine how
many steps until they all turn into Z’s, given that at each step, the lowest
O turns into a Z, and all Z’s below it turn into O’s.

Solution

Interpret each O as a 1 and each Z as a 0. Then the operation is just
“subtract 1” in binary.

The answer is the decimal value of the given binary string.

Pitfalls

Simulation gets TLE.

Need to use 64-bit integers.

Statistics: 824 submissions, 112 accepted.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 3 / 27

H - Zebras and Ocelots

Problem

Given a vertical stack of Zebras (Z’s) and Ocelots (O’s), determine how
many steps until they all turn into Z’s, given that at each step, the lowest
O turns into a Z, and all Z’s below it turn into O’s.

Solution

Interpret each O as a 1 and each Z as a 0. Then the operation is just
“subtract 1” in binary.

The answer is the decimal value of the given binary string.

Pitfalls

Simulation gets TLE.

Need to use 64-bit integers.

Statistics: 824 submissions, 112 accepted.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 3 / 27

H - Zebras and Ocelots

Problem

Given a vertical stack of Zebras (Z’s) and Ocelots (O’s), determine how
many steps until they all turn into Z’s, given that at each step, the lowest
O turns into a Z, and all Z’s below it turn into O’s.

Solution

Interpret each O as a 1 and each Z as a 0. Then the operation is just
“subtract 1” in binary.

The answer is the decimal value of the given binary string.

Pitfalls

Simulation gets TLE.

Need to use 64-bit integers.

Statistics: 824 submissions, 112 accepted.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 3 / 27

I - Racing Around the Alphabet

Problem

Find the total time to pick up all letters of a phrase, running around a
circular disk.

A B
C

D

E
F

G
H

I
J

K
L

M
NOP

Q
R

S
T

U
V

W
X

Y

Z
 ’

Problem Author: Ivor Page NCNA 2017 Solution Slides 4 / 27

I - Racing Around the Alphabet

Problem

Find the total time to pick up all letters of a phrase, running around a
circular disk.

Solution
1 Figure out circumference of circle.

2 Shortest path between two letters follows the shorter distance around
the circle.

3 Calculate time to travel between all consecutive pairs of letters in
aphorism.

Statistics: 170 submissions, 114 accepted.

Problem Author: Ivor Page NCNA 2017 Solution Slides 5 / 27

I - Racing Around the Alphabet

Problem

Find the total time to pick up all letters of a phrase, running around a
circular disk.

Solution
1 Figure out circumference of circle.

2 Shortest path between two letters follows the shorter distance around
the circle.

3 Calculate time to travel between all consecutive pairs of letters in
aphorism.

Statistics: 170 submissions, 114 accepted.

Problem Author: Ivor Page NCNA 2017 Solution Slides 5 / 27

I - Racing Around the Alphabet

Problem

Find the total time to pick up all letters of a phrase, running around a
circular disk.

Solution
1 Figure out circumference of circle.

2 Shortest path between two letters follows the shorter distance around
the circle.

3 Calculate time to travel between all consecutive pairs of letters in
aphorism.

Statistics: 170 submissions, 114 accepted.

Problem Author: Ivor Page NCNA 2017 Solution Slides 5 / 27

I - Racing Around the Alphabet

Problem

Find the total time to pick up all letters of a phrase, running around a
circular disk.

Solution
1 Figure out circumference of circle.

2 Shortest path between two letters follows the shorter distance around
the circle.

3 Calculate time to travel between all consecutive pairs of letters in
aphorism.

Statistics: 170 submissions, 114 accepted.

Problem Author: Ivor Page NCNA 2017 Solution Slides 5 / 27

G - Sheba’s Amoebas

Problem

Count the number of amoebas contained entirely within one another in a
2D grid.

Figure: Two Petri dishes, each with four amoebas.

Problem Author: Bob Roos NCNA 2017 Solution Slides 6 / 27

G - Sheba’s Amoebas

Problem

Count the number of amoebas contained entirely within one another in a
2D grid.

Solution

Run a modified flood fill:

1 Iterate over every pixel of the grid.

2 If the pixel is black, run DFS from this point, recursively marking all
black neighbors as visited.

3 Answer is the number of times DFS is restarted.

Statistics: 143 submissions, 77 accepted.

Problem Author: Bob Roos NCNA 2017 Solution Slides 7 / 27

G - Sheba’s Amoebas

Problem

Count the number of amoebas contained entirely within one another in a
2D grid.

Solution

Run a modified flood fill:

1 Iterate over every pixel of the grid.

2 If the pixel is black, run DFS from this point, recursively marking all
black neighbors as visited.

3 Answer is the number of times DFS is restarted.

Statistics: 143 submissions, 77 accepted.

Problem Author: Bob Roos NCNA 2017 Solution Slides 7 / 27

G - Sheba’s Amoebas

Problem

Count the number of amoebas contained entirely within one another in a
2D grid.

Solution

Run a modified flood fill:

1 Iterate over every pixel of the grid.

2 If the pixel is black, run DFS from this point, recursively marking all
black neighbors as visited.

3 Answer is the number of times DFS is restarted.

Statistics: 143 submissions, 77 accepted.

Problem Author: Bob Roos NCNA 2017 Solution Slides 7 / 27

G - Sheba’s Amoebas

Problem

Count the number of amoebas contained entirely within one another in a
2D grid.

Solution

Run a modified flood fill:

1 Iterate over every pixel of the grid.

2 If the pixel is black, run DFS from this point, recursively marking all
black neighbors as visited.

3 Answer is the number of times DFS is restarted.

Statistics: 143 submissions, 77 accepted.

Problem Author: Bob Roos NCNA 2017 Solution Slides 7 / 27

G - Sheba’s Amoebas

Problem

Count the number of amoebas contained entirely within one another in a
2D grid.

Solution

Run a modified flood fill:

1 Iterate over every pixel of the grid.

2 If the pixel is black, run DFS from this point, recursively marking all
black neighbors as visited.

3 Answer is the number of times DFS is restarted.

Statistics: 143 submissions, 77 accepted.

Problem Author: Bob Roos NCNA 2017 Solution Slides 7 / 27

C - Urban Design

Problem

Given a set of infinite lines in the 2D plane and queries that consist of two
regions defined by points within these regions, determine if these regions
should get different or same designations, given that regions immediately
across a line from one another get different designations.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 8 / 27

C - Urban Design

Solution

Think of the regions as lines are added into the plane one-by-one.

R
R

C

R

C
C

R

R

C
C

C

R

CR

As you pass through a line, the designation of the region changes.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 9 / 27

C - Urban Design

Solution

Think of the regions as lines are added into the plane one-by-one.

R

R

C

R

C
C

R

R

C
C

C

R

CR

As you pass through a line, the designation of the region changes.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 9 / 27

C - Urban Design

Solution

Think of the regions as lines are added into the plane one-by-one.

R

R

C

R

C
C

R

R

C
C

C

R

CR

As you pass through a line, the designation of the region changes.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 9 / 27

C - Urban Design

Solution

Think of the regions as lines are added into the plane one-by-one.

R
R

C

R

C
C

R

R

C
C

C

R

CR

As you pass through a line, the designation of the region changes.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 9 / 27

C - Urban Design

Solution

Think of the regions as lines are added into the plane one-by-one.

R
R

C

R

C
C

R

R

C
C

C

R

CR

As you pass through a line, the designation of the region changes.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 9 / 27

C - Urban Design

Solution

Think of the regions as lines are added into the plane one-by-one.

R
R

C

R

C
C

R

R

C
C

C

R

CR

As you pass through a line, the designation of the region changes.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 9 / 27

C - Urban Design

Solution

Draw a line segment between the two given query points.

If the number of infinite lines this segment intersects with is even,
then the answer is “same”, and if it is odd, then the answer is
“different.”

Statistics: 128 submissions, 25 accepted.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 10 / 27

C - Urban Design

Solution

Draw a line segment between the two given query points.

If the number of infinite lines this segment intersects with is even,
then the answer is “same”, and if it is odd, then the answer is
“different.”

Statistics: 128 submissions, 25 accepted.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 10 / 27

C - Urban Design

Solution

Draw a line segment between the two given query points.

If the number of infinite lines this segment intersects with is even,
then the answer is “same”, and if it is odd, then the answer is
“different.”

Statistics: 128 submissions, 25 accepted.

Problem Author: Robert Hochberg NCNA 2017 Solution Slides 10 / 27

J - Lost Map

Problem

Given the distance between every pair of nodes in a weighted tree, recover
the tree.

Solution

Observation: The smallest distance must be a tree edge.

So must the next smallest.

So must the next, if it does not create a cycle.

This is Kruskal’s minimum spanning tree algorithm. The answer is
the MST of the distance matrix.

Time complexity: O(n2 log n). An O(n3) algorithm should TLE.

Statistics: 131 submissions, 17 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 11 / 27

J - Lost Map

Problem

Given the distance between every pair of nodes in a weighted tree, recover
the tree.

Solution

Observation: The smallest distance must be a tree edge.

So must the next smallest.

So must the next, if it does not create a cycle.

This is Kruskal’s minimum spanning tree algorithm. The answer is
the MST of the distance matrix.

Time complexity: O(n2 log n). An O(n3) algorithm should TLE.

Statistics: 131 submissions, 17 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 11 / 27

J - Lost Map

Problem

Given the distance between every pair of nodes in a weighted tree, recover
the tree.

Solution

Observation: The smallest distance must be a tree edge.

So must the next smallest.

So must the next, if it does not create a cycle.

This is Kruskal’s minimum spanning tree algorithm. The answer is
the MST of the distance matrix.

Time complexity: O(n2 log n). An O(n3) algorithm should TLE.

Statistics: 131 submissions, 17 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 11 / 27

J - Lost Map

Problem

Given the distance between every pair of nodes in a weighted tree, recover
the tree.

Solution

Observation: The smallest distance must be a tree edge.

So must the next smallest.

So must the next, if it does not create a cycle.

This is Kruskal’s minimum spanning tree algorithm. The answer is
the MST of the distance matrix.

Time complexity: O(n2 log n). An O(n3) algorithm should TLE.

Statistics: 131 submissions, 17 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 11 / 27

J - Lost Map

Problem

Given the distance between every pair of nodes in a weighted tree, recover
the tree.

Solution

Observation: The smallest distance must be a tree edge.

So must the next smallest.

So must the next, if it does not create a cycle.

This is Kruskal’s minimum spanning tree algorithm. The answer is
the MST of the distance matrix.

Time complexity: O(n2 log n). An O(n3) algorithm should TLE.

Statistics: 131 submissions, 17 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 11 / 27

J - Lost Map

Problem

Given the distance between every pair of nodes in a weighted tree, recover
the tree.

Solution

Observation: The smallest distance must be a tree edge.

So must the next smallest.

So must the next, if it does not create a cycle.

This is Kruskal’s minimum spanning tree algorithm. The answer is
the MST of the distance matrix.

Time complexity: O(n2 log n). An O(n3) algorithm should TLE.

Statistics: 131 submissions, 17 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 11 / 27

J - Lost Map

Problem

Given the distance between every pair of nodes in a weighted tree, recover
the tree.

Solution

Observation: The smallest distance must be a tree edge.

So must the next smallest.

So must the next, if it does not create a cycle.

This is Kruskal’s minimum spanning tree algorithm. The answer is
the MST of the distance matrix.

Time complexity: O(n2 log n). An O(n3) algorithm should TLE.

Statistics: 131 submissions, 17 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 11 / 27

B - Pokemon Go Go

Problem

Given a set of pokemon and where they appear in the 2D plane, determine
the shortest distance required to collect all unique pokemon.

Solution

This is the traveling salesman problem with the twist that at a
particular vertex there may be multiple pokemon that can be
collected.

TSP DP on locations: O(n22n) ≈ 400 million iterations, still gets AC.

Faster solution is to do subset DP on the set of pokemon collected.

DP(i ,S) := minimum distance to visit pokemon in set S , ending at
location i .

DP(i ,S) = minj DP(j ,S \ {pokemon at location i}) + dist(j , i).

Time complexity: O(n22D), where D is the number of distinct
pokemon.

Problem Author: Bruce Elenbogen NCNA 2017 Solution Slides 12 / 27

B - Pokemon Go Go

Problem

Given a set of pokemon and where they appear in the 2D plane, determine
the shortest distance required to collect all unique pokemon.

Solution

This is the traveling salesman problem with the twist that at a
particular vertex there may be multiple pokemon that can be
collected.

TSP DP on locations: O(n22n) ≈ 400 million iterations, still gets AC.

Faster solution is to do subset DP on the set of pokemon collected.

DP(i ,S) := minimum distance to visit pokemon in set S , ending at
location i .

DP(i ,S) = minj DP(j , S \ {pokemon at location i}) + dist(j , i).

Time complexity: O(n22D), where D is the number of distinct
pokemon.

Problem Author: Bruce Elenbogen NCNA 2017 Solution Slides 12 / 27

B - Pokemon Go Go

Problem

Given a set of pokemon and where they appear in the 2D plane, determine
the shortest distance required to collect all unique pokemon.

Solution

This is the traveling salesman problem with the twist that at a
particular vertex there may be multiple pokemon that can be
collected.

TSP DP on locations: O(n22n) ≈ 400 million iterations, still gets AC.

Faster solution is to do subset DP on the set of pokemon collected.

DP(i ,S) := minimum distance to visit pokemon in set S , ending at
location i .

DP(i ,S) = minj DP(j , S \ {pokemon at location i}) + dist(j , i).

Time complexity: O(n22D), where D is the number of distinct
pokemon.

Problem Author: Bruce Elenbogen NCNA 2017 Solution Slides 12 / 27

B - Pokemon Go Go

Problem

Given a set of pokemon and where they appear in the 2D plane, determine
the shortest distance required to collect all unique pokemon.

Solution

This is the traveling salesman problem with the twist that at a
particular vertex there may be multiple pokemon that can be
collected.

TSP DP on locations: O(n22n) ≈ 400 million iterations, still gets AC.

Faster solution is to do subset DP on the set of pokemon collected.

DP(i ,S) := minimum distance to visit pokemon in set S , ending at
location i .

DP(i ,S) = minj DP(j ,S \ {pokemon at location i}) + dist(j , i).

Time complexity: O(n22D), where D is the number of distinct
pokemon.

Problem Author: Bruce Elenbogen NCNA 2017 Solution Slides 12 / 27

B - Pokemon Go Go

Problem

Given a set of pokemon and where they appear in the 2D plane, determine
the shortest distance required to collect all unique pokemon.

Solution

This is the traveling salesman problem with the twist that at a
particular vertex there may be multiple pokemon that can be
collected.

TSP DP on locations: O(n22n) ≈ 400 million iterations, still gets AC.

Faster solution is to do subset DP on the set of pokemon collected.

DP(i , S) := minimum distance to visit pokemon in set S , ending at
location i .

DP(i ,S) = minj DP(j ,S \ {pokemon at location i}) + dist(j , i).

Time complexity: O(n22D), where D is the number of distinct
pokemon.

Problem Author: Bruce Elenbogen NCNA 2017 Solution Slides 12 / 27

B - Pokemon Go Go

Problem

Given a set of pokemon and where they appear in the 2D plane, determine
the shortest distance required to collect all unique pokemon.

Solution

This is the traveling salesman problem with the twist that at a
particular vertex there may be multiple pokemon that can be
collected.

TSP DP on locations: O(n22n) ≈ 400 million iterations, still gets AC.

Faster solution is to do subset DP on the set of pokemon collected.

DP(i , S) := minimum distance to visit pokemon in set S , ending at
location i .

DP(i , S) = minj DP(j , S \ {pokemon at location i}) + dist(j , i).

Time complexity: O(n22D), where D is the number of distinct
pokemon.

Problem Author: Bruce Elenbogen NCNA 2017 Solution Slides 12 / 27

B - Pokemon Go Go

Problem

Given a set of pokemon and where they appear in the 2D plane, determine
the shortest distance required to collect all unique pokemon.

Solution

This is the traveling salesman problem with the twist that at a
particular vertex there may be multiple pokemon that can be
collected.

TSP DP on locations: O(n22n) ≈ 400 million iterations, still gets AC.

Faster solution is to do subset DP on the set of pokemon collected.

DP(i , S) := minimum distance to visit pokemon in set S , ending at
location i .

DP(i , S) = minj DP(j , S \ {pokemon at location i}) + dist(j , i).

Time complexity: O(n22D), where D is the number of distinct
pokemon.

Problem Author: Bruce Elenbogen NCNA 2017 Solution Slides 12 / 27

B - Pokemon Go Go

Statistics: 73 submissions, 7 accepted.

Problem Author: Bruce Elenbogen NCNA 2017 Solution Slides 13 / 27

E - Is-A? Has-A? Who Knowz-A?

Problem

Given a set of is-a and has-a relationships, answer is-a and has-a queries,
defined as follows:

1 A is-a B if and only if there is a path of is-a relationships from A to B

2 A has-a B if and only if there is a path of is-a and has-a relationships
from A to B that includes at least one has-a relationship.

Problem Author: John Bonomo NCNA 2017 Solution Slides 14 / 27

E - Is-A? Has-A? Who Knowz-A?

Can be modeled as a graph with two types of edges. Ex, Sample Input 1:

Appt.Day

Time DateBook

Year

Reminder
has-a

is-a is-a

has-a

is-a

Problem Author: John Bonomo NCNA 2017 Solution Slides 15 / 27

Solution

Can answer each query via careful DFS: O(nm).

Alternatively, can preprocess all relationships via clever application of
Floyd-Warshall. The algorithm is as follows:
for (int k = 0; k < D; ++k) {

for (int i = 0; i < D; ++i) {

for (int j = 0; j < D; ++j) {

is_a[i][j] = is_a[i][j] || (is_a[i][k] && is_a[k][j]);

has_a[i][j] = has_a[i][j] || (has_a[i][k] && has_a[k][j]);

has_a[i][j] = has_a[i][j] || (is_a[i][k] && has_a[k][j]);

has_a[i][j] = has_a[i][j] || (has_a[i][k] && is_a[k][j]);

}

}

}

Time complexity: O(D3 + m), where D is the number of distinct
classes, which is at most 500.

Statistics: 215 submissions, 4 accepted.

Problem Author: John Bonomo NCNA 2017 Solution Slides 16 / 27

Solution

Can answer each query via careful DFS: O(nm).

Alternatively, can preprocess all relationships via clever application of
Floyd-Warshall. The algorithm is as follows:
for (int k = 0; k < D; ++k) {

for (int i = 0; i < D; ++i) {

for (int j = 0; j < D; ++j) {

is_a[i][j] = is_a[i][j] || (is_a[i][k] && is_a[k][j]);

has_a[i][j] = has_a[i][j] || (has_a[i][k] && has_a[k][j]);

has_a[i][j] = has_a[i][j] || (is_a[i][k] && has_a[k][j]);

has_a[i][j] = has_a[i][j] || (has_a[i][k] && is_a[k][j]);

}

}

}

Time complexity: O(D3 + m), where D is the number of distinct
classes, which is at most 500.

Statistics: 215 submissions, 4 accepted.

Problem Author: John Bonomo NCNA 2017 Solution Slides 16 / 27

Solution

Can answer each query via careful DFS: O(nm).

Alternatively, can preprocess all relationships via clever application of
Floyd-Warshall. The algorithm is as follows:
for (int k = 0; k < D; ++k) {

for (int i = 0; i < D; ++i) {

for (int j = 0; j < D; ++j) {

is_a[i][j] = is_a[i][j] || (is_a[i][k] && is_a[k][j]);

has_a[i][j] = has_a[i][j] || (has_a[i][k] && has_a[k][j]);

has_a[i][j] = has_a[i][j] || (is_a[i][k] && has_a[k][j]);

has_a[i][j] = has_a[i][j] || (has_a[i][k] && is_a[k][j]);

}

}

}

Time complexity: O(D3 + m), where D is the number of distinct
classes, which is at most 500.

Statistics: 215 submissions, 4 accepted.

Problem Author: John Bonomo NCNA 2017 Solution Slides 16 / 27

Solution

Can answer each query via careful DFS: O(nm).

Alternatively, can preprocess all relationships via clever application of
Floyd-Warshall. The algorithm is as follows:
for (int k = 0; k < D; ++k) {

for (int i = 0; i < D; ++i) {

for (int j = 0; j < D; ++j) {

is_a[i][j] = is_a[i][j] || (is_a[i][k] && is_a[k][j]);

has_a[i][j] = has_a[i][j] || (has_a[i][k] && has_a[k][j]);

has_a[i][j] = has_a[i][j] || (is_a[i][k] && has_a[k][j]);

has_a[i][j] = has_a[i][j] || (has_a[i][k] && is_a[k][j]);

}

}

}

Time complexity: O(D3 + m), where D is the number of distinct
classes, which is at most 500.

Statistics: 215 submissions, 4 accepted.

Problem Author: John Bonomo NCNA 2017 Solution Slides 16 / 27

A - Stoichiometry

Problem

Balance a chemical equation.

Problem Author: Larry Pyeatt NCNA 2017 Solution Slides 17 / 27

A - Stoichiometry

Solution

Make a system of equations. Each coefficient is an unknown and for
every unique atom, we get an equation, since the number of atoms of
each type is preserved through the chemical reaction.

Define matrix A where Aij = number of atoms of type i in molecule j .

Ex, Sample Input 1:

H2O + CO2 → O2 + C6H12O6

yields H 2 0 0 −12
O 1 2 −2 −6
C 0 1 0 −6

x1
x2
x3
x4

 =

0
0
0
0

Problem Author: Larry Pyeatt NCNA 2017 Solution Slides 18 / 27

A - Stoichiometry

Solution

Make a system of equations. Each coefficient is an unknown and for
every unique atom, we get an equation, since the number of atoms of
each type is preserved through the chemical reaction.

Define matrix A where Aij = number of atoms of type i in molecule j .

Ex, Sample Input 1:

H2O + CO2 → O2 + C6H12O6

yields H 2 0 0 −12
O 1 2 −2 −6
C 0 1 0 −6

x1
x2
x3
x4

 =

0
0
0
0

Problem Author: Larry Pyeatt NCNA 2017 Solution Slides 18 / 27

A - Stoichiometry

Solution

Make a system of equations. Each coefficient is an unknown and for
every unique atom, we get an equation, since the number of atoms of
each type is preserved through the chemical reaction.

Define matrix A where Aij = number of atoms of type i in molecule j .

Ex, Sample Input 1:

H2O + CO2 → O2 + C6H12O6

yields H 2 0 0 −12
O 1 2 −2 −6
C 0 1 0 −6

x1
x2
x3
x4

 =

0
0
0
0

Problem Author: Larry Pyeatt NCNA 2017 Solution Slides 18 / 27

A - Stoichiometry

Solution

Put A in reduced row-echelon form, ex:

Arref =

H 1 0 0 −6
O 0 1 0 −6
C 0 0 1 −6

This requires us to work over a field. Input is small so floating point
error is negligible, therefore we can use doubles.

The problem description guarantees there will be exactly one free
variable, since there is a unique minimal solution.

Set this free variable to the smallest positive value that yields an
integer solution.

Statistics: 5 submissions, 2 accepted.

Problem Author: Larry Pyeatt NCNA 2017 Solution Slides 19 / 27

A - Stoichiometry

Solution

Put A in reduced row-echelon form, ex:

Arref =

H 1 0 0 −6
O 0 1 0 −6
C 0 0 1 −6

This requires us to work over a field. Input is small so floating point
error is negligible, therefore we can use doubles.

The problem description guarantees there will be exactly one free
variable, since there is a unique minimal solution.

Set this free variable to the smallest positive value that yields an
integer solution.

Statistics: 5 submissions, 2 accepted.

Problem Author: Larry Pyeatt NCNA 2017 Solution Slides 19 / 27

A - Stoichiometry

Solution

Put A in reduced row-echelon form, ex:

Arref =

H 1 0 0 −6
O 0 1 0 −6
C 0 0 1 −6

This requires us to work over a field. Input is small so floating point
error is negligible, therefore we can use doubles.

The problem description guarantees there will be exactly one free
variable, since there is a unique minimal solution.

Set this free variable to the smallest positive value that yields an
integer solution.

Statistics: 5 submissions, 2 accepted.

Problem Author: Larry Pyeatt NCNA 2017 Solution Slides 19 / 27

A - Stoichiometry

Solution

Put A in reduced row-echelon form, ex:

Arref =

H 1 0 0 −6
O 0 1 0 −6
C 0 0 1 −6

This requires us to work over a field. Input is small so floating point
error is negligible, therefore we can use doubles.

The problem description guarantees there will be exactly one free
variable, since there is a unique minimal solution.

Set this free variable to the smallest positive value that yields an
integer solution.

Statistics: 5 submissions, 2 accepted.

Problem Author: Larry Pyeatt NCNA 2017 Solution Slides 19 / 27

F - Atlantis

Problem

Given pairs of integers ti and hi representing a gold store, determine the
maximum number of gold stores that can be visited, if store i takes ti time
to visit and needs to be visited prior to time hi .

Solution

Observation: Given a set of stores to visit, the best order in which to
visit them is in increasing order of hi .

Observation: If we prefer stores with smaller ti , we leave more room
for other stores to be visited.

Greedy algorithm: Sort stores by increasing ti . Maintain a feasible
solution F . Add store i to F if doing so does not destroy feasibility.

Checking feasibility in O(log n) time may require a lazy segment tree
or balanced binary search tree.

Advanced data structures can be avoided if you are clever.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 20 / 27

F - Atlantis

Problem

Given pairs of integers ti and hi representing a gold store, determine the
maximum number of gold stores that can be visited, if store i takes ti time
to visit and needs to be visited prior to time hi .

Solution

Observation: Given a set of stores to visit, the best order in which to
visit them is in increasing order of hi .

Observation: If we prefer stores with smaller ti , we leave more room
for other stores to be visited.

Greedy algorithm: Sort stores by increasing ti . Maintain a feasible
solution F . Add store i to F if doing so does not destroy feasibility.

Checking feasibility in O(log n) time may require a lazy segment tree
or balanced binary search tree.

Advanced data structures can be avoided if you are clever.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 20 / 27

F - Atlantis

Problem

Given pairs of integers ti and hi representing a gold store, determine the
maximum number of gold stores that can be visited, if store i takes ti time
to visit and needs to be visited prior to time hi .

Solution

Observation: Given a set of stores to visit, the best order in which to
visit them is in increasing order of hi .

Observation: If we prefer stores with smaller ti , we leave more room
for other stores to be visited.

Greedy algorithm: Sort stores by increasing ti . Maintain a feasible
solution F . Add store i to F if doing so does not destroy feasibility.

Checking feasibility in O(log n) time may require a lazy segment tree
or balanced binary search tree.

Advanced data structures can be avoided if you are clever.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 20 / 27

F - Atlantis

Problem

Given pairs of integers ti and hi representing a gold store, determine the
maximum number of gold stores that can be visited, if store i takes ti time
to visit and needs to be visited prior to time hi .

Solution

Observation: Given a set of stores to visit, the best order in which to
visit them is in increasing order of hi .

Observation: If we prefer stores with smaller ti , we leave more room
for other stores to be visited.

Greedy algorithm: Sort stores by increasing ti . Maintain a feasible
solution F . Add store i to F if doing so does not destroy feasibility.

Checking feasibility in O(log n) time may require a lazy segment tree
or balanced binary search tree.

Advanced data structures can be avoided if you are clever.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 20 / 27

F - Atlantis

Problem

Given pairs of integers ti and hi representing a gold store, determine the
maximum number of gold stores that can be visited, if store i takes ti time
to visit and needs to be visited prior to time hi .

Solution

Observation: Given a set of stores to visit, the best order in which to
visit them is in increasing order of hi .

Observation: If we prefer stores with smaller ti , we leave more room
for other stores to be visited.

Greedy algorithm: Sort stores by increasing ti . Maintain a feasible
solution F . Add store i to F if doing so does not destroy feasibility.

Checking feasibility in O(log n) time may require a lazy segment tree
or balanced binary search tree.

Advanced data structures can be avoided if you are clever.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 20 / 27

F - Atlantis

Problem

Given pairs of integers ti and hi representing a gold store, determine the
maximum number of gold stores that can be visited, if store i takes ti time
to visit and needs to be visited prior to time hi .

Solution

Observation: Given a set of stores to visit, the best order in which to
visit them is in increasing order of hi .

Observation: If we prefer stores with smaller ti , we leave more room
for other stores to be visited.

Greedy algorithm: Sort stores by increasing ti . Maintain a feasible
solution F . Add store i to F if doing so does not destroy feasibility.

Checking feasibility in O(log n) time may require a lazy segment tree
or balanced binary search tree.

Advanced data structures can be avoided if you are clever.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 20 / 27

F - Atlantis

O(n log n) Solution with c++ set

1 Maintain F as a set of pairs (hi , ti)

2 To see if store i can be added to F , we iterate down the tree starting
at the first store scheduled to end before hi , removing the pairs and
keeping track of the sum of tj ’s of the removed intervals.

3 If for any j ,
∑

j tj + ti ≤ hi , we can add store i . Insert (hi ,
∑

j tj + ti)
back into the tree.

4 If we get to the beginning of the set, we cannot add store i . Insert
(hi ,

∑
j tj) back into the tree.

If we add store i , inserting (hi ,
∑

j tj + ti) into the tree is equivalent to
scheduling store i right before hi and pushing everything else earlier to
make room.
If we do not add store i , we will not be able to add any store i ′, i ′ > i
before time hi , so where stores before hi are scheduled in F is no longer
relevant.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 21 / 27

F - Atlantis

O(n log n) Solution with c++ set

1 Maintain F as a set of pairs (hi , ti)

2 To see if store i can be added to F , we iterate down the tree starting
at the first store scheduled to end before hi , removing the pairs and
keeping track of the sum of tj ’s of the removed intervals.

3 If for any j ,
∑

j tj + ti ≤ hi , we can add store i . Insert (hi ,
∑

j tj + ti)
back into the tree.

4 If we get to the beginning of the set, we cannot add store i . Insert
(hi ,

∑
j tj) back into the tree.

If we add store i , inserting (hi ,
∑

j tj + ti) into the tree is equivalent to
scheduling store i right before hi and pushing everything else earlier to
make room.
If we do not add store i , we will not be able to add any store i ′, i ′ > i
before time hi , so where stores before hi are scheduled in F is no longer
relevant.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 21 / 27

F - Atlantis

O(n log n) Solution with c++ set

1 Maintain F as a set of pairs (hi , ti)

2 To see if store i can be added to F , we iterate down the tree starting
at the first store scheduled to end before hi , removing the pairs and
keeping track of the sum of tj ’s of the removed intervals.

3 If for any j ,
∑

j tj + ti ≤ hi , we can add store i . Insert (hi ,
∑

j tj + ti)
back into the tree.

4 If we get to the beginning of the set, we cannot add store i . Insert
(hi ,

∑
j tj) back into the tree.

If we add store i , inserting (hi ,
∑

j tj + ti) into the tree is equivalent to
scheduling store i right before hi and pushing everything else earlier to
make room.
If we do not add store i , we will not be able to add any store i ′, i ′ > i
before time hi , so where stores before hi are scheduled in F is no longer
relevant.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 21 / 27

F - Atlantis

O(n log n) Solution with c++ set

1 Maintain F as a set of pairs (hi , ti)

2 To see if store i can be added to F , we iterate down the tree starting
at the first store scheduled to end before hi , removing the pairs and
keeping track of the sum of tj ’s of the removed intervals.

3 If for any j ,
∑

j tj + ti ≤ hi , we can add store i . Insert (hi ,
∑

j tj + ti)
back into the tree.

4 If we get to the beginning of the set, we cannot add store i . Insert
(hi ,

∑
j tj) back into the tree.

If we add store i , inserting (hi ,
∑

j tj + ti) into the tree is equivalent to
scheduling store i right before hi and pushing everything else earlier to
make room.
If we do not add store i , we will not be able to add any store i ′, i ′ > i
before time hi , so where stores before hi are scheduled in F is no longer
relevant.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 21 / 27

F - Atlantis

O(n log n) Solution with c++ set

1 Maintain F as a set of pairs (hi , ti)

2 To see if store i can be added to F , we iterate down the tree starting
at the first store scheduled to end before hi , removing the pairs and
keeping track of the sum of tj ’s of the removed intervals.

3 If for any j ,
∑

j tj + ti ≤ hi , we can add store i . Insert (hi ,
∑

j tj + ti)
back into the tree.

4 If we get to the beginning of the set, we cannot add store i . Insert
(hi ,

∑
j tj) back into the tree.

If we add store i , inserting (hi ,
∑

j tj + ti) into the tree is equivalent to
scheduling store i right before hi and pushing everything else earlier to
make room.

If we do not add store i , we will not be able to add any store i ′, i ′ > i
before time hi , so where stores before hi are scheduled in F is no longer
relevant.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 21 / 27

F - Atlantis

O(n log n) Solution with c++ set

1 Maintain F as a set of pairs (hi , ti)

2 To see if store i can be added to F , we iterate down the tree starting
at the first store scheduled to end before hi , removing the pairs and
keeping track of the sum of tj ’s of the removed intervals.

3 If for any j ,
∑

j tj + ti ≤ hi , we can add store i . Insert (hi ,
∑

j tj + ti)
back into the tree.

4 If we get to the beginning of the set, we cannot add store i . Insert
(hi ,

∑
j tj) back into the tree.

If we add store i , inserting (hi ,
∑

j tj + ti) into the tree is equivalent to
scheduling store i right before hi and pushing everything else earlier to
make room.
If we do not add store i , we will not be able to add any store i ′, i ′ > i
before time hi , so where stores before hi are scheduled in F is no longer
relevant.
Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 21 / 27

F - Atlantis

O(n log n) Solution with c++ set

Time complexity of checking feasibility in this approach:
O(log n · (# of intervals removed from the tree + 1)).

We only insert one interval per feasibility check, therefore the cost of
deletes amortize amongst the adds.

Overall time complexity: O(n log n).

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 22 / 27

F - Atlantis

O(n log n) Solution with c++ set

Time complexity of checking feasibility in this approach:
O(log n · (# of intervals removed from the tree + 1)).

We only insert one interval per feasibility check, therefore the cost of
deletes amortize amongst the adds.

Overall time complexity: O(n log n).

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 22 / 27

F - Atlantis

O(n log n) Solution with c++ set

Time complexity of checking feasibility in this approach:
O(log n · (# of intervals removed from the tree + 1)).

We only insert one interval per feasibility check, therefore the cost of
deletes amortize amongst the adds.

Overall time complexity: O(n log n).

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 22 / 27

F - Atlantis

Simpler O(n log n) Solution using Priority Queues

1 Sort the stores by increasing hi .

2 Maintain a priority queue of F keyed by ti , largest ti on top.

3 Add store i to F .

4 Pop from the priority queue until
∑

j∈F tj ≤ hi .

Without loss of generality assume each ti is distinct. Let add(i) be a true
or false value denoting whether store i is added in this strategy. Then

add(i) =
∑

j s.t. tj<ti
and add(j)

tj + ti ≤ hi .

This is the same condition as the originally proposed greedy algorithm.
Time Complexity: O(n log n).

Statistics: 72 submissions, 0 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 23 / 27

F - Atlantis

Simpler O(n log n) Solution using Priority Queues

1 Sort the stores by increasing hi .

2 Maintain a priority queue of F keyed by ti , largest ti on top.

3 Add store i to F .

4 Pop from the priority queue until
∑

j∈F tj ≤ hi .

Without loss of generality assume each ti is distinct. Let add(i) be a true
or false value denoting whether store i is added in this strategy. Then

add(i) =
∑

j s.t. tj<ti
and add(j)

tj + ti ≤ hi .

This is the same condition as the originally proposed greedy algorithm.
Time Complexity: O(n log n).

Statistics: 72 submissions, 0 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 23 / 27

F - Atlantis

Simpler O(n log n) Solution using Priority Queues

1 Sort the stores by increasing hi .

2 Maintain a priority queue of F keyed by ti , largest ti on top.

3 Add store i to F .

4 Pop from the priority queue until
∑

j∈F tj ≤ hi .

Without loss of generality assume each ti is distinct. Let add(i) be a true
or false value denoting whether store i is added in this strategy. Then

add(i) =
∑

j s.t. tj<ti
and add(j)

tj + ti ≤ hi .

This is the same condition as the originally proposed greedy algorithm.
Time Complexity: O(n log n).

Statistics: 72 submissions, 0 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 23 / 27

F - Atlantis

Simpler O(n log n) Solution using Priority Queues

1 Sort the stores by increasing hi .

2 Maintain a priority queue of F keyed by ti , largest ti on top.

3 Add store i to F .

4 Pop from the priority queue until
∑

j∈F tj ≤ hi .

Without loss of generality assume each ti is distinct. Let add(i) be a true
or false value denoting whether store i is added in this strategy. Then

add(i) =
∑

j s.t. tj<ti
and add(j)

tj + ti ≤ hi .

This is the same condition as the originally proposed greedy algorithm.
Time Complexity: O(n log n).

Statistics: 72 submissions, 0 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 23 / 27

F - Atlantis

Simpler O(n log n) Solution using Priority Queues

1 Sort the stores by increasing hi .

2 Maintain a priority queue of F keyed by ti , largest ti on top.

3 Add store i to F .

4 Pop from the priority queue until
∑

j∈F tj ≤ hi .

Without loss of generality assume each ti is distinct. Let add(i) be a true
or false value denoting whether store i is added in this strategy. Then

add(i) =
∑

j s.t. tj<ti
and add(j)

tj + ti ≤ hi .

This is the same condition as the originally proposed greedy algorithm.
Time Complexity: O(n log n).

Statistics: 72 submissions, 0 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 23 / 27

F - Atlantis

Simpler O(n log n) Solution using Priority Queues

1 Sort the stores by increasing hi .

2 Maintain a priority queue of F keyed by ti , largest ti on top.

3 Add store i to F .

4 Pop from the priority queue until
∑

j∈F tj ≤ hi .

Without loss of generality assume each ti is distinct. Let add(i) be a true
or false value denoting whether store i is added in this strategy. Then

add(i) =
∑

j s.t. tj<ti
and add(j)

tj + ti ≤ hi .

This is the same condition as the originally proposed greedy algorithm.

Time Complexity: O(n log n).

Statistics: 72 submissions, 0 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 23 / 27

F - Atlantis

Simpler O(n log n) Solution using Priority Queues

1 Sort the stores by increasing hi .

2 Maintain a priority queue of F keyed by ti , largest ti on top.

3 Add store i to F .

4 Pop from the priority queue until
∑

j∈F tj ≤ hi .

Without loss of generality assume each ti is distinct. Let add(i) be a true
or false value denoting whether store i is added in this strategy. Then

add(i) =
∑

j s.t. tj<ti
and add(j)

tj + ti ≤ hi .

This is the same condition as the originally proposed greedy algorithm.
Time Complexity: O(n log n).

Statistics: 72 submissions, 0 accepted.

Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 23 / 27

F - Atlantis

Simpler O(n log n) Solution using Priority Queues

1 Sort the stores by increasing hi .

2 Maintain a priority queue of F keyed by ti , largest ti on top.

3 Add store i to F .

4 Pop from the priority queue until
∑

j∈F tj ≤ hi .

Without loss of generality assume each ti is distinct. Let add(i) be a true
or false value denoting whether store i is added in this strategy. Then

add(i) =
∑

j s.t. tj<ti
and add(j)

tj + ti ≤ hi .

This is the same condition as the originally proposed greedy algorithm.
Time Complexity: O(n log n).

Statistics: 72 submissions, 0 accepted.
Problem Author: Bryce Sandlund NCNA 2017 Solution Slides 23 / 27

D - Smooth Array

Problem

Given an array A of N integers, determine the minimum number of
changes in A to make every contiguous subarray of length K sum to S .

Problem Author: Bowen Yu NCNA 2017 Solution Slides 24 / 27

D - Smooth Array

Solution

As the problem states, for the array to be KS -smooth, it must contain
a repeating pattern of length K .

Can use dynamic programming to find the pattern that requires the
minimum number of changes in A.

Let DP(i , j) := minimum number of changes to make the first i
integers of the pattern sum to j .

And let cost(i , v) := number of changes in A to make
Ai ,Ai+K ,Ai+2K , . . . equal to v .

A simple recurrence is then
DP(i , j) = minv DP(i − 1, j − v) + cost(i , v)

There are O(KS) states and each takes O(S) time to evaluate, so the
complexity is O(KS2). # of iterations: 50003 = 125 ∗ 109 ⇒ TLE!

Problem Author: Bowen Yu NCNA 2017 Solution Slides 25 / 27

D - Smooth Array

Solution

As the problem states, for the array to be KS -smooth, it must contain
a repeating pattern of length K .

Can use dynamic programming to find the pattern that requires the
minimum number of changes in A.

Let DP(i , j) := minimum number of changes to make the first i
integers of the pattern sum to j .

And let cost(i , v) := number of changes in A to make
Ai ,Ai+K ,Ai+2K , . . . equal to v .

A simple recurrence is then
DP(i , j) = minv DP(i − 1, j − v) + cost(i , v)

There are O(KS) states and each takes O(S) time to evaluate, so the
complexity is O(KS2). # of iterations: 50003 = 125 ∗ 109 ⇒ TLE!

Problem Author: Bowen Yu NCNA 2017 Solution Slides 25 / 27

D - Smooth Array

Solution

As the problem states, for the array to be KS -smooth, it must contain
a repeating pattern of length K .

Can use dynamic programming to find the pattern that requires the
minimum number of changes in A.

Let DP(i , j) := minimum number of changes to make the first i
integers of the pattern sum to j .

And let cost(i , v) := number of changes in A to make
Ai ,Ai+K ,Ai+2K , . . . equal to v .

A simple recurrence is then
DP(i , j) = minv DP(i − 1, j − v) + cost(i , v)

There are O(KS) states and each takes O(S) time to evaluate, so the
complexity is O(KS2). # of iterations: 50003 = 125 ∗ 109 ⇒ TLE!

Problem Author: Bowen Yu NCNA 2017 Solution Slides 25 / 27

D - Smooth Array

Solution

As the problem states, for the array to be KS -smooth, it must contain
a repeating pattern of length K .

Can use dynamic programming to find the pattern that requires the
minimum number of changes in A.

Let DP(i , j) := minimum number of changes to make the first i
integers of the pattern sum to j .

And let cost(i , v) := number of changes in A to make
Ai ,Ai+K ,Ai+2K , . . . equal to v .

A simple recurrence is then
DP(i , j) = minv DP(i − 1, j − v) + cost(i , v)

There are O(KS) states and each takes O(S) time to evaluate, so the
complexity is O(KS2). # of iterations: 50003 = 125 ∗ 109 ⇒ TLE!

Problem Author: Bowen Yu NCNA 2017 Solution Slides 25 / 27

D - Smooth Array

Solution

As the problem states, for the array to be KS -smooth, it must contain
a repeating pattern of length K .

Can use dynamic programming to find the pattern that requires the
minimum number of changes in A.

Let DP(i , j) := minimum number of changes to make the first i
integers of the pattern sum to j .

And let cost(i , v) := number of changes in A to make
Ai ,Ai+K ,Ai+2K , . . . equal to v .

A simple recurrence is then
DP(i , j) = minv DP(i − 1, j − v) + cost(i , v)

There are O(KS) states and each takes O(S) time to evaluate, so the
complexity is O(KS2). # of iterations: 50003 = 125 ∗ 109 ⇒ TLE!

Problem Author: Bowen Yu NCNA 2017 Solution Slides 25 / 27

D - Smooth Array

Solution

As the problem states, for the array to be KS -smooth, it must contain
a repeating pattern of length K .

Can use dynamic programming to find the pattern that requires the
minimum number of changes in A.

Let DP(i , j) := minimum number of changes to make the first i
integers of the pattern sum to j .

And let cost(i , v) := number of changes in A to make
Ai ,Ai+K ,Ai+2K , . . . equal to v .

A simple recurrence is then
DP(i , j) = minv DP(i − 1, j − v) + cost(i , v)

There are O(KS) states and each takes O(S) time to evaluate, so the
complexity is O(KS2).

of iterations: 50003 = 125 ∗ 109 ⇒ TLE!

Problem Author: Bowen Yu NCNA 2017 Solution Slides 25 / 27

D - Smooth Array

Solution

As the problem states, for the array to be KS -smooth, it must contain
a repeating pattern of length K .

Can use dynamic programming to find the pattern that requires the
minimum number of changes in A.

Let DP(i , j) := minimum number of changes to make the first i
integers of the pattern sum to j .

And let cost(i , v) := number of changes in A to make
Ai ,Ai+K ,Ai+2K , . . . equal to v .

A simple recurrence is then
DP(i , j) = minv DP(i − 1, j − v) + cost(i , v)

There are O(KS) states and each takes O(S) time to evaluate, so the
complexity is O(KS2). # of iterations: 50003 = 125 ∗ 109 ⇒ TLE!

Problem Author: Bowen Yu NCNA 2017 Solution Slides 25 / 27

D - Smooth Array

An O(NS) Solution

Observation: there are at most dN/Ke unique values in
{Ai ,Ai+K ,Ai+2K , . . .}.

All other values of v require changing all of Ai ,Ai+K ,Ai+2K , . . ., so
the cost function for these values will be d(N − i + 1)/Ke.
Instead of iterating all v in this second category, we can precompute
the best v to minimize DP(i − 1, j − v).

We can still try all dN/Ke values of v in the first category.

The recurrence now takes O(N/K) time.

Time complexity: O(KS · N/K) = O(NS).

Statistics: 37 submissions, 0 accepted.

Problem Author: Bowen Yu NCNA 2017 Solution Slides 26 / 27

D - Smooth Array

An O(NS) Solution

Observation: there are at most dN/Ke unique values in
{Ai ,Ai+K ,Ai+2K , . . .}.
All other values of v require changing all of Ai ,Ai+K ,Ai+2K , . . ., so
the cost function for these values will be d(N − i + 1)/Ke.

Instead of iterating all v in this second category, we can precompute
the best v to minimize DP(i − 1, j − v).

We can still try all dN/Ke values of v in the first category.

The recurrence now takes O(N/K) time.

Time complexity: O(KS · N/K) = O(NS).

Statistics: 37 submissions, 0 accepted.

Problem Author: Bowen Yu NCNA 2017 Solution Slides 26 / 27

D - Smooth Array

An O(NS) Solution

Observation: there are at most dN/Ke unique values in
{Ai ,Ai+K ,Ai+2K , . . .}.
All other values of v require changing all of Ai ,Ai+K ,Ai+2K , . . ., so
the cost function for these values will be d(N − i + 1)/Ke.
Instead of iterating all v in this second category, we can precompute
the best v to minimize DP(i − 1, j − v).

We can still try all dN/Ke values of v in the first category.

The recurrence now takes O(N/K) time.

Time complexity: O(KS · N/K) = O(NS).

Statistics: 37 submissions, 0 accepted.

Problem Author: Bowen Yu NCNA 2017 Solution Slides 26 / 27

D - Smooth Array

An O(NS) Solution

Observation: there are at most dN/Ke unique values in
{Ai ,Ai+K ,Ai+2K , . . .}.
All other values of v require changing all of Ai ,Ai+K ,Ai+2K , . . ., so
the cost function for these values will be d(N − i + 1)/Ke.
Instead of iterating all v in this second category, we can precompute
the best v to minimize DP(i − 1, j − v).

We can still try all dN/Ke values of v in the first category.

The recurrence now takes O(N/K) time.

Time complexity: O(KS · N/K) = O(NS).

Statistics: 37 submissions, 0 accepted.

Problem Author: Bowen Yu NCNA 2017 Solution Slides 26 / 27

D - Smooth Array

An O(NS) Solution

Observation: there are at most dN/Ke unique values in
{Ai ,Ai+K ,Ai+2K , . . .}.
All other values of v require changing all of Ai ,Ai+K ,Ai+2K , . . ., so
the cost function for these values will be d(N − i + 1)/Ke.
Instead of iterating all v in this second category, we can precompute
the best v to minimize DP(i − 1, j − v).

We can still try all dN/Ke values of v in the first category.

The recurrence now takes O(N/K) time.

Time complexity: O(KS · N/K) = O(NS).

Statistics: 37 submissions, 0 accepted.

Problem Author: Bowen Yu NCNA 2017 Solution Slides 26 / 27

D - Smooth Array

An O(NS) Solution

Observation: there are at most dN/Ke unique values in
{Ai ,Ai+K ,Ai+2K , . . .}.
All other values of v require changing all of Ai ,Ai+K ,Ai+2K , . . ., so
the cost function for these values will be d(N − i + 1)/Ke.
Instead of iterating all v in this second category, we can precompute
the best v to minimize DP(i − 1, j − v).

We can still try all dN/Ke values of v in the first category.

The recurrence now takes O(N/K) time.

Time complexity: O(KS · N/K) = O(NS).

Statistics: 37 submissions, 0 accepted.

Problem Author: Bowen Yu NCNA 2017 Solution Slides 26 / 27

D - Smooth Array

An O(NS) Solution

Observation: there are at most dN/Ke unique values in
{Ai ,Ai+K ,Ai+2K , . . .}.
All other values of v require changing all of Ai ,Ai+K ,Ai+2K , . . ., so
the cost function for these values will be d(N − i + 1)/Ke.
Instead of iterating all v in this second category, we can precompute
the best v to minimize DP(i − 1, j − v).

We can still try all dN/Ke values of v in the first category.

The recurrence now takes O(N/K) time.

Time complexity: O(KS · N/K) = O(NS).

Statistics: 37 submissions, 0 accepted.

Problem Author: Bowen Yu NCNA 2017 Solution Slides 26 / 27

Questions? Comments? Concerns? Email Bryce Sandlund:
bcsandlund@uwaterloo.ca.

Problem Author: Bowen Yu NCNA 2017 Solution Slides 27 / 27

	Introduction

