
Andrew Stankevich Contest 47
Petrozavodsk Winter Training Camp, February 8, 2015

Problem A. Ambitious Plan
Input file: ambitious.in

Output file: ambitious.out

Time limit: 4 seconds
Memory limit: 512 megabytes

Steven Sleepberg is going to produce the forty seventh sequel to his film “Battlefield Jupiter” and is now
planning the main battle scene. The script of the scene says that n empire drones would attack m republic
forts. The attack proceeds as follows: a drone shoots the laser cannon towards one of the forts. The defense
in turn has t power towers, and one pair of towers creates a power shield. The power shield is a segment
connecting the two towers. If the shield intersects the segment which connects the shooting drone with
its target a spectacular explosion takes place.

Steven wants the scene to be as spectacular as possible. So he wants to film all possible pairs of shoot
and shield that cause explosion. Help him to estimate the length of the scene by counting the number of
possible explosions.

Let us consider drones, forts and power towers as points on a plane. The line of defense coincides with
the line y = 0, so y-coordinates of all forts and towers are less than 0, and y-coordinates of all drones
are greater than 0. You are given coordinates of n drones, m forts and t towers. Find the number of sets
{D,F, T1, T2} such that D is drone, F is fort, T1 and T2 are towers, and segments DF and T1T2 intersect.
No two points coincide, no three points are on the same line.

Input
The input file contains multiple test cases.

Each test case starts with n — the number of drones (1 ≤ n ≤ 1500), n lines follow, each line contains
dxi, dyi — coordinates of a drone. Integer m — the number of forts (1 ≤ m ≤ 1500) — follows, with m
more lines, each line contains fxi, fyi — coordinates of a fort. Finally there goes t — the number of towers
(2 ≤ t ≤ 1500) followed by t lines, each line contains txi, tyi — coordinates of a tower.

All drones coordinates satisfy −109 ≤ dxi ≤ 109, 0 < dyi ≤ 109. All forts and towers coordinates satisfy
−109 ≤ fxi, txi ≤ 109, −109 ≤ fyi, tyi < 0.

Input is followed by a line containing a single zero.

The total number of drones in the input file is at most 1500. The total number of forts in the input file
is at most 1500. The total number of towers in the input file is at most 1500.

Output
For each test case print one integer: the number of possible pairs of shoot-shield that cause an explosion.

Example
ambitious.in ambitious.out

3

1 12

10 30

30 10

1

10 -10

4

2 -11

9 -1

11 -1

15 -14

0

7
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Problem B. Borderless Words
Input file: borderless.in

Output file: borderless.out

Time limit: 4 seconds
Memory limit: 512 megabytes

A word w is called bordered if there exists a word u, other then w and empty word ε, such that u is both
suffix and prefix if w. For example, a word «abbababb» is bordered because «abb» is both its prefix and
its suffix. A word that is not bordered is called borderless. For example, a word «aabab» is borderless.

Consider all borderless words of length n composed of letters «a» and «b». Let us denote the number of
such words as Cn. Order them lexicographically — by the first letter, then by the second one, etc, and
number from 1 to Cn. Given k find the k-th word in this order.

Input
The input file contains multiple test cases.

Each test case contains two integers n and k on a line (1 ≤ n ≤ 64, 1 ≤ k ≤ Cn).

Input is followed by a line with n = k = 0. There are at most 1000 test cases in one input file.

Output
For each test case output one line — the k-th lexicographically borderless word of length n.

Examples
borderless.in borderless.out

5 1

5 2

5 3

5 4

5 5

0 0

aaaab

aaabb

aabab

aabbb

ababb
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Problem C. Catalan Combinatorial Objects
Input file: catalan.in

Output file: catalan.out

Time limit: 2 seconds
Memory limit: 512 megabytes

Andrew likes Catalan numbers. Also Andrew likes to joke.

He is an experienced problem setter and prepares lots of contests for training camps. Each contest he
prepares a problem that has one integer as input, one integer as output, and answers for 0, 1, 2, 3, 4,
and 5 are, respectively, 1, 1, 2, 5, 14 and 42. However, answers for greater inputs don’t coincide with
corresponding Catalan numbers.

Andrew has already prepared so many contests, that he is short of good problems with such property.
So he decided to automate the process of creating such problems. As a good pool of possible problems
he considers problems of counting combinatorial objects of a specific nature. Andrew has chosen k — the
desired answer for the input 6, and wants to find a description of a combinatorial object that has 1, 1, 2,
5, 14, 42, k objects with weight 0, 1, 2, 3, 4, 5, 6, respectively.

Andrew uses the following ways to construct combinatorial objects.

The base set B consists of one unit object u of weight 1. Each constructed object x has some weight w(x).
If the object is constructed of one or more other objects, its weight is equal to the sum of their weights.

Let X be the set of some combinatorial objects. Consider the following ways to construct new sets.

The set L(X) contains all possible lists of finite length, each element of which belongs to X and has
positive weight. For example, L(B) contains [], [u], [u, u], [u, u, u], etc. Similarly, L(L(B)) contains [],
[[u]], [[u], [u]], [[u, u], [u]], [[u], [u, u]], etc. Note, that the last two lists are different: the order of elements
in the list matters. Also note that [[]] is not a valid list in L(L(B)) because only objects of positive weight
are allowed in lists, and [] has zero weight.

The set S(X) contains all possible multisets of finite size, each element of which belongs to X and has
positive weight. For example, S(B) contains {}, {u}, {u, u}, {u, u, u}, etc. Another example: S(L(B))
contains such sets as {[u]}, {[u], [u]}. Note that multiset may contain several equal objects. Another
example: {[u], [u, u]}, note that in a multiset the order doesn’t matter, so this is the same as {[u, u], [u]}.
The set C(X) contains all possible cycles of finite length, each element of which belongs to X and
has positive weight. Two cycles are considered equal if one can be converted to another by a cyclic
shift. For example C(L(B)) contains ([u], [u, u], [u, u, u]). Note that this this object is the same as
([u, u], [u, u, u], [u]), but not the same as ([u, u, u], [u, u], [u]).

Again, the weight of a list, a set, or a cycle is the sum of weights of its elements. So, for example, the
weight of ([u], [u, u], [u, u, u]) is 6.

The final way to construct the new class of objects is pair. If X and Y are sets of objects P (X,Y ) is the
set of ordered pairs of objects where the first component is from X and the second one is from Y . For
example, P (S(B), L(B)) contains ⟨{u, u}, [u, u, u]⟩ or ⟨{}, [u]⟩. Note that unlike lists, sets, or cycles, pairs
can have zero-weight components.

Given k find the description of a set of combinatorial object that contains 1 element of weight 0, 1 element
of weight 1, 2 elements of weight 2, 5 elements of weight 3, 14 elements of weight 4, 42 elements of weight
5 and k elements of weight 6.

Input
The input file contains multiple test cases.

Each test case contains a single integer k on a line by itself (120 ≤ k ≤ 140).

Input is followed by a line with n = 0.
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Output
For each test case print the description of a set of combinatorial objects in the format described in problem
statement on a line by itself. Your description must have length of at most 2000. Do not print spaces.

Examples
catalan.in

125

0

catalan.out

L(P(L(P(L(L(B)),B)),P(B,L(P(P(B,B),P(B,B))))))
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Problem D. Decomposable Single Word Languages
Input file: decomposable.in

Output file: decomposable.out

Time limit: 2 seconds
Memory limit: 512 megabytes

Deterministic finite automaton (DFA) is an ordered set ⟨Σ, U, S, T, φ⟩ where Σ is the finite set called input
alphabet, in this problem Σ = {a, b, . . . , z}, U is the finite set of states, S ∈ U is the initial state, T ⊂ U
is the set of terminal states and φ : U × Σ → U is the transition function.

The input of the automaton is the string α over Σ. Initially the automaton is in state s. Each step the
automaton reads the first character c of the input string and changes its state to φ(u, c) where u is the
current state. Then the first character of the input string is removed and the step repeats. If after its
input string is empty the automaton is in the terminal state, it accepts the initial string α, in the other
case it rejects it. The set of all words accepted by an automaton A is denoted as L(A).

One can visualize DFA as a directed graph representing its states as vertices and its transitions as edges
marked with characters. Terminal states are shown as double circled vertices, the initial state is marked
by an arrow. The picture below on the left shows the automaton for a language (ab)∗ of words that
consist of zero or more repeated words “ab”. The picture below on the right shows the automaton for a
language a∗ba∗ba∗ that consist of “a” and “b” and contain two “b”-s. For sake of clarity edges marked by
“∗” represent all transitions not explicitly drawn.

a

b*
*

*

b b

a a a

* *

*

*

A set X of words is called a regular language if it is equal to L(A) for some DFA A. The index of a regular
language X denoted as ind(X) is the minimal number of states in a DFA A such that L(A) = X. For
example, the two automatons shown on the picture above are indeed the minimal DFA-s for the described
languages, so ind((ab)∗) = 3 and ind(a∗ba∗ba∗) = 4.

It is well known that if X1 and X2 are two regular languages its intersection X1 ∩ X2 is also a
regular language. For example, the intersection of the two languages described above is the language
Y = (ab)∗ ∩ (a∗ba∗ba∗) = {abab} that contains a single word “abab”. Clearly a single word language is
regular, the automaton for Y is shown on the picture below.

a b a b

* * *

* *

*

It is easy to see that if W is a single word language W = {w}, and length of w is n, the index of W is
equal to n+ 2.
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A regular language X is called decomposable if X can be represented as an intersection of two regular
languages X = X1 ∩ X2 and ind(X) > ind(X1) and ind(X) > ind(X2). For example, the single word
language Y = {abab} is decomposable.

Given a word w of length n find whether the single word language W = {w} is decomposable and if it
is, find two automatons A1 and A2 such that number of states in both A1 and A2 is less than n+ 2 and
W = L(A1) ∩ L(A2).

Input
The input file contains multiple test cases.

Each test case consists of a word w on a line on itself, w consists of lowercase letters of the English
alphabet, length of w is between 1 and 50, inclusive.

There are at most 100 tests in one input file.

Output
For each test case first print «YES» if the corresponding single-word language is decomposable, or «NO» if
it is not. If the language is decomposable, the description of two DFA-s must follow. Each DFA description
must start with k — the number of states, 1 ≤ k ≤ n + 1, where n is the length of the input word. Let
states be numbered from 1 to k, the initial state is the state number 1. Then print t — the number of
terminal states, 1 ≤ t ≤ k, followed by t integers from 1 to k — terminal states. The following k lines
must contain 26 integers each: for a state u print φ(u, a), φ(u, b), . . . , φ(u, z).

Examples
decomposable.in

abab

a

decomposable.out

YES

3

1

1

2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4

1

3

2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

NO
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Problem E. Elegant Square
Input file: elegant.in

Output file: elegant.out

Time limit: 2 seconds
Memory limit: 512 megabytes

Many people know about magic squares — squares that contain distinct numbers and have equals sums
of rows and columns. Recently Eve has heard about magic squares, and now she has invented her own
version: elegant squares.

Eve calls a square of n× n integers elegant if the following conditions are satisfied:

• All entries of the square are distinct positive integers.

• All integers are square free. That means that no integer is divisible by t2 for any t > 1.

• The product of numbers in any row and any column is the same.

For example, the picture below shows an elegant 3× 3 square.

1 21 10
6 5 7
35 2 3

All of its entries are distinct positive square free integers, and product of any row and any column is 210.

Help Eve, find an n× n elegant square. All numbers in the square must not exceed 1018. It is guaranteed
that for the given constraints there exists such square.

Input
The input file a single integer n (3 ≤ n ≤ 30).

Output
Output n× n integers: the found elegant square. All printed integers must not exceed 1018.

Examples
elegant.in elegant.out

3 1 21 10

6 5 7

35 2 3
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Problem F. Four Colors
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 megabytes

This is an interactive problem.

Fred and Fiona are tired of playing tic-tac-toe at boring lessons, so they have invented the new game.
The board for the game is a connected undirected graph without cycles, also known as a tree. Players
alternate their turns, Fred moves first. The players use pencils of four colors for the game: red, green, blue
and yellow, we will denote colors by integers from 1 to 4.

Initially all vertices of the tree are uncolored. Each move the current player chooses some uncolored vertex
and colors it with one of the four possible colors in such way that no two vertices connected by an edge
have the same color.

If the current player has no moves because all vertices are colored already, or there is no vertex that can
be correctly colored, the game ends and the winner is determined in the following way. If all vertices are
colored, Fred wins, if there is an uncolored vertex, Fiona wins.

Friends have played many games, and Fiona has noticed that Fred always wins. After a thought she
understood that there is a winning strategy for Fred that he has found. Can you do the same?

Interaction Protocol
Your program will play the game with judges’ program via standard input and output.

First your program must read the description of the tree. If is specified by n — the number of vertices
(2 ≤ n ≤ 1000), followed by n − 1 pairs of vertices ui, vi — the edges of the tree (vertices are numbered
from 1 to n).

Then the interaction proceeds as follows. Your program makes the first move by printing the yet uncolored
vertex number u and the color it wishes to color it c to standard output. Then it must read the opponent’s
move in the same format, make its move in return, and so on.

When the game is over because your program has won (either by coloring the last vertex, or by forcing
the judges’ program to color the last vertex), instead of opponent’s move your program will read “−1 −1”
from standard input. After reading it you program must terminate. Though you can deduce that you have
won earlier, or understand that your move is the last move, you should exit only after reading “−1 −1”
from standard input.
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Examples
standard input standard output

8

1 2

1 3

2 4

2 5

3 6

3 7

3 8

6 2

8 3

4 2

-1 -1

1 1

7 2

3 4

2 3

Note
Input is formatted to show which output makes response to the corresponding input. There will be no
empty lines in real interaction.

In the given example the judges’ program makes the last move (either “5 1”, “5 2” or “5 4”) but doesn’t
report it to your program, because after that the game is over and your program has won.
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Problem G. Greater Number Wins
Input file: greater.in

Output file: greater.out

Time limit: 2 seconds
Memory limit: 512 megabytes

George and Gordon are playing a game called “Greater number wins”.

The game proceeds as follows. Each player has a row of d cells. Initially all cells are empty. There are two
variants of the game, both are considered in this problem.

In the first variant the players make move in turn, George moves first. Each move the player rolls a special
dice which generates a random digit from 0 to b − 1, each with equal probability. After that the player
puts the digit to one of the free cells of his row.

After each player has made d moves the game is over and the winner is the player who has greater number
in base b written in his row. If both players have the same number the game is draw.

The second variant of the game is almost the same, but first George makes his d moves, and then Gordon
makes his d moves.

Given d and b find the probability that George would win in the first and the second variant of the game,
respectively. Each player tries to maximize his probability of winning, if it is not possible to win, the
probability of making a draw.

Input
The input file contains multiple test cases.

Each test case contains two integers d and b on a line (1 ≤ d ≤ 10, 2 ≤ b ≤ 10, (b+ 1)d ≤ 3000).

Input is followed by a line with d = b = 0.

Output
For each test case output two numbers on a line: the probability that George would win in the first and
the second variant of the game, respectively. Your answer must be accurate up to 10−6.

Examples
greater.in greater.out

1 2

2 2

0 0

0.25 0.25

0.3125 0.3125

In sample test for both variants each player must play using the following strategy. If he gets 1, put it
to the leftmost empty cell of his row, which corresponds to the most significant digit, if he gets 0, put it
to the rightmost empty cell of his row. If there is only one cell George wins if he gets 1 and Gordon gets
0, the probability of such outcome is 1/4. If there are two cells, five outcomes of 16 possible are good for
George: 11 vs 10, 01, or 00; 10 vs 00; and 01 vs 00.
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Problem H. Higher Math Lesson
Input file: higher.in

Output file: higher.out

Time limit: 2 seconds
Memory limit: 512 megabytes

Henry is sleeping at a boring higher math lesson in National Search University of This and That. When
he suddenly wakes up the teacher asks him to solve the following problem. Given an n × n matrix A
of integers Henry must find invertible integer matrices L and R such that the following conditions are
satisfied:

• B = LAR is a diagonal matrix;

• there is such j (0 ≤ j ≤ n) that bi,i = 0 if and only if i > j;

• for all i from 2 to j the number bi,i is divisible by bi−1,i−1.

An integer matrix C is called invertible if there exist an integer matrix C−1 such that CC−1 = I where
I is a unit matrix.

Henry has been sleeping for most of lessons, so he doesn’t know how to do it. So he asks you to help.

Input
The input file contains multiple test cases.

Each test case starts with an integer n — size of a matrix, followed by n lines of n integers each — the
given matrix (2 ≤ n ≤ 5, elements of matrices are from −10 to 10).

Input is followed by a line with n = 0. Each input file contains at most 100 test cases.

Output
For each test case print four integer matrices: L, L−1, R and R−1. It is guaranteed that such matrices
always exist. Separate matrices by a blank line. If there are several solutions, print any one.

Examples
higher.in higher.out

3

1 2 3

6 5 4

7 8 9

0

1 0 0

1 1 -1

-13 -6 7

1 0 0

6 7 1

7 6 1

1 -2 1

0 1 -2

0 0 1

1 2 3

0 1 2

0 0 1

In the given example 1 0 0
1 1 −1

−13 −6 7

1 2 3
6 5 4
7 8 9

1 −2 1
0 1 −2
0 0 1

 =

1 0 0
0 −1 0
0 0 0


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Problem I. Isomorphism
Input file: isomorphism.in

Output file: isomorphism.out

Time limit: 2 seconds
Memory limit: 512 megabytes

Graph isomorphism is an important problem in Computer Science. It is not known whether the polynomial
algorithm exists for this problem, neither it is known to be NP-complete.

Two undirected graphs G and H are called isomorphic if they have the same number of vertices and
there exists a bijection φ : V G → V H such that there is an edge uv in G if and only if there is an edge
φ(u)φ(v) in H. There are some characteristics of graphs that are invariant under isomorphism. One of
such parameters is degree profile of the graph.

The degree deg(u) of a vertex u is the number of other vertices connected to u by edges. Consider a
connected undirected graph G with n vertices. For each vertex u find sets Vu,0, Vu,1, . . . , Vu,n−1 of vertices
at distance 0, 1, . . . , n− 1 from u (some of these sets may be empty). For each such set find the multiset
Du,i of degrees of vertices from Vu,i. The list of these multisets Du = [Du,0, Du,1, . . . , Du,n−1] is the degree
profile of vertex u. The multiset of degree profiles of all vertices of the graph is its degree profile.

For example, the graph displayed below has degree profile
{
[{1}, {2}, {1}], [{2}, {1, 1},∅], [{1}, {2}, {1}]

}
.

It is clear that degree profile is invariant under isomorphism. However, there can be graphs that have
the same degree profile but are not isomorphic. The example of two such graphs is shown on the picture
below. Degree 2 vertices of both graphs have degree profiles [{2}, {3, 3}, {3, 3}, {2},∅,∅], and degree 3
vertices have degree profiles [{3}, {2, 3, 3}, {2, 3},∅,∅,∅], but graphs are clearly not isomorphic.

Note that when different degree profiles prove that graphs are not isomorphic, same degree profiles do
not give easy way to find isomorphism even if it exists, because correspondence between vertices of the
same degree profile can be difficult to establish. There is however class of graphs for which degree profile
allows to easily check for isomorphism. These are graphs where all vertices have different degree profiles.
Let us call such graphs degree distinguishable.

However, even degree distinguishable graphs can have the same degree profile but be non-isomorphic.
Given n find two non-isomorphic connected degree distinguishable graphs with n vertices that have the
same degree profile.

Input
The input file contains one integer n (3 ≤ n ≤ 100).
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Output
If there are no two non-isomorphic degree distinguishable graphs with n vertices that have the same degree
profile, print “NO” at the first line of the output file. In the other case print “YES” followed by two graph
description.

Each description must start with m — number of edges, followed by m pairs of integers: pairs of vertices
connected by edges. There must be at most one edge between a pair of vertices, no edge must connect a
vertex to itself.

Vertices of each graph must be numbered from 1 to n in such way that vertices i of both graphs have the
same degree profile. No two vertices of the same graph must have the same degree profile.

Note
The second example gives two non-isomorphic graphs with the same degree profile but not degree
distinguishable. They are provided to illustrate output format, but such output for n = 6 will not be
accepted.

Examples
isomorphism.in isomorphism.out

3 NO

6 YES

8

1 2

1 6

2 3

2 5

3 4

3 6

4 5

5 6

8

1 2

1 6

2 3

2 6

3 4

3 5

4 5

5 6

Note that this is incorrect output
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Problem J. Jinxiety of a Polyomino
Input file: jinxiety.in

Output file: jinxiety.out

Time limit: 2 seconds
Memory limit: 512 megabytes

A polyomino is a connected set of unit squares on a square grid. The picture below shows 4 examples of
polyominoes.

(a) (b) (c) (d)

Polyomino is called convex if its intersection with any vertical or horizontal line is a segment. The picture
above shows two convex polyominoes (a) and (b) and two non-convex ones (c) and (d).

Two squares are called adjacent if they share a common side. It is easy to see that for any two squares of a
convex polyomino it is possible to get from any square to any other one moving from a square to adjacent
one and using only two directions. The picture below shows an example of such path for polyomino (b).

For a convex polyomino P let us define its jinxiety J(P ) as a minimal k such that it is possible to get
from any square to any other square by a path that uses two directions and makes at most k turns. For
example, the polyomino (a) has jinxiety of 1 and polyomino (b) has jinxiety of 2.

Given a convex polyomino you have to find its jinxiety.

Input
The input file contains multiple test cases.

Each test case contains two integers h and w — the number of rows and columns in polyomino description,
respectively (1 ≤ h,w ≤ 2000).

The following h lines contain w characters each and describe the polyomino. Each character is either “.”
for an empty square, or “#” for a polyomino square. It is guaranteed that the described figure is a convex
polyomino.

Input is followed by a line with h = w = 0. The total number of characters in all polyomino descriptions
of the input file is at most 4 · 106. There are at most 40 000 tests.

Output
For each test case print one integer: the jinxiety of the polyomino in the input.
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Examples
jinxiety.in jinxiety.out

4 5

#####

#####

###..

##...

5 5

####.

.####

..###

...##

...##

0 0

1

2
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