
Benelux Algorithm
Programming Contest

Finals

Saturday October 15th 2011

Contents

A Popping Balloons 3

B Quick out of the Harbour 5

C Find the Treasure 7

D Bad Wiring 9

E Undercover Pirate 11

F Ultimate Finishing Strike 13

G Doubloon Game 15

H Walking the Plank 17

I Parking Ships 19

J Treasure Map 21

2

A Popping Balloons

Problem

John loves programming contests. There is just one problem: his team is not very good at
programming. This usually doesn’t bother him, but what does bother him is that everyone gets a
balloon for every correct submission. John’s team never gets any balloons, while other teams get
one balloon after the other. This frustrates him, so John would like to see that all other teams
have no balloons either.

This year he has a plan to achieve just that. John has hired a ninja to pop all balloons for him.
At any time during the contest, he can call for the ninja to come down through a hole in the
ceiling and pop all balloons by using his shurikens (ninja stars), before leaving through the hole
in the ceiling again. Of course the ninja wants to use as few of his precious shurikens as possible.
Therefore, John must write a program that computes how many shurikens are needed to pop all
balloons. Because all balloons are usually at approximately the same height, he can model the
problem as a 2-dimensional problem. He sets the location of the ninja (where he comes in) as the
origin (0, 0) and uses circles to model the balloons. To be on the safe side, these circles can have
different radii. Shurikens are assumed to be thrown from the origin and move in a straight line.
Any circle/balloon crossed by this halfline will be popped by this shuriken. The question then
becomes: how many halflines rooted at the origin are necessary to cross all circles?

Of course, as mentioned above, John is not a very good programmer, so he asks you to make this
program for him. Can you help him out? You might get a balloon if you get it right...

Input

The first line of the input contains a single number: the number of test cases to follow. Each test
case has the following format:

• One line with a single integer n (0 ≤ n ≤ 1, 000): the number of balloons.

• n lines, each containing three integers xi, yi (−104 ≤ xi, yi ≤ 104), and ri (1 ≤ ri ≤ 104),
describing the circle used to model the ith balloon, where (xi, yi) is the center of the circle
and ri is the radius.

You can assume that two lines (rooted at the origin) that are tangent to two distinct circles make
an angle of at least 10−6 radians at the origin. Furthermore, the circles do not cross each other
(but can touch) and do not contain the origin.

Output

For every test case in the input, the output should contain one integer on a single line: the
minimum number of shurikens the ninja needs to pop all balloons.

3

Examples

Input Output
2 4
5 3
2 0 1
5 0 2
0 3 2
-4 0 2
0 -2 1
5
4 1 3
5 -5 3
0 -4 2
-4 4 3
-10 3 3 Figure 1: Second sample case

Disclaimer

No balloons were harmed during the making of this problem.

4

B Quick out of the Harbour

Problem

Captain Clearbeard decided to go to the harbour for a few days so his crew could inspect and
repair the ship. Now, a few days later, the pirates are getting landsick1. Before all of the pirates
become too sick to row the boat out of the harbour, captain Clearbeard decided to leave the
harbour as quickly as possible.

Unfortunately the harbour isn’t just a straight path to open sea. To protect the city from evil
pirates, the entrance of the harbour is a kind of maze with drawbridges in it. Every bridge takes
some time to open, so it could be faster to take a detour. Your task is to help captain Clearbeard
find the fastest way out to open sea.

The pirates will row as fast as one minute per grid cell on the map. The ship can move only
horizontally or vertically on the map. Making a 90 degree turn does not take any extra time.

Input

The first line of the input contains a single number: the number of test cases to follow. Each test
case has the following format:

• One line with three integers, h, w (3 ≤ h, w ≤ 500), and d (0 ≤ d ≤ 50), the height and
width of the map and the delay for opening a bridge.

• h lines with w characters: the description of the map. The map is described using the
following characters:

– ‘S’, the starting position of the ship.

– ‘.’, water.

– ‘#’, land.

– ‘@’, a drawbridge.

Each harbour is completely surrounded with land, with exception of the single entrance.

Output

For every test case in the input, the output should contain one integer on a single line: the
travelling time of the fastest route to open sea. There is always a route to open sea. Note that
the open sea is not shown on the map, so you need to move outside of the map to reach open sea.

1Pirates get landsick when they don’t get enough of the ships’ rocking motion. That’s why pirates often try to
simulate that motion by drinking rum.

5

Examples

Input Output
2 16
6 5 7 11
#####
#S..#
#@#.#
#...#
#@###
#.###
4 5 3
#####
#S#.#
#@..#
###@#

6

C Find the Treasure

Problem

Four hundred years ago, a group of pirates hid a treasure on an island in an archipelago that
consists of many very small islands. Unfortunately, these pirates were particularly bad navigators
and cartographers. Therefore, instead of a map, they made drawings of views from the top of the
mountain on the treasure island. Each view shows two or more other islands of the archipelago
that can be seen from the treasure island, ordered from left to right. The views also contain lots
of fog, so the drawings may fail to show some islands that must have been in the field of view
between the islands that appear in the drawing. For example, in Figure 2 below, if the treasure is
hidden on Rummet, then the pirates could have drawn a view showing (from left to right) Wisket,
Ginnet and Vinnet, or a view showing (from left to right) Liquorel and Cidrel. The pirates are
known to have had acute vision, with a viewing angle of 180 degrees, but bad drawing skills: the
distances between Wisket, Ginnet and Vinnet in their drawing are meaningless, and Liquorel may
be drawn far to the left of Cidrel while in the actual view from Rummet, Liquorel must have been
only slightly to the left of Cidrel, even obscuring part of it. Fortunately, all islands in the drawings
can be identified easily thanks to the unique towers on top of each island.

Rummet

Pilsnum

Alet

Liquorel

Cidrel

Shnahpsum

Vinnet

Ginnet

Wisket

Figure 2: Map of a hypothetical archipelago, and some views from Rummet as the pirates could
have drawn them.

Now, four hundred years later, you have got the pirates’ drawings and an excellent, accurate map
of the archipelago, showing all islands. On which island is the treasure hidden?

Input

The first line of the input contains a single number: the number of archipelagos to follow. Each
archipelago has the following format:

• One line with an integer n, satisfying 1 ≤ n ≤ 125, 000: the number of islands in the
archipelago.

• n lines, each with two integers xi and yi, satisfying 0 < xi < 229 and 0 < yi < 229: these are
the coordinates of the tower Ti on each island.

• One line with an integer k: the number of test cases for this archipelago. Each test case has
the following format:

7

– One line with an integer m, satisfying 0 ≤ m ≤ 10, 000: the number of pairs of islands
that appear in the pirates’ drawings.

– m lines, each with two integers l and r such that 1 ≤ l ≤ n, 1 ≤ r ≤ n, l 6= r, meaning
that the tower Tl is drawn to the left of tower Tr.

In any archipelago, no two towers have the same x-coordinate, no two towers have the same
y-coordinate, and no three towers lie on a line.

Output

For every test case in the input, the output should contain:

• One line with an integer i (1 ≤ i ≤ n), identifying the i-th island in the archipelago, for each
island that could be the treasure island. These lines need to be in increasing order.

• One line containing the number 0.

Example

The following input describes one archipelago with one test case, namely the information corre-
sponding to the map and the views shown in Figure 2. The potential treasure islands are Rummet,
Alet, and Schnahpsum.

Input Output
1 6
9 7
28 34 8
32 30 0
12 29
27 22
42 23
18 18
5 14
26 12
34 5
1
4
1 2
1 9
2 9
4 5

8

D Bad Wiring

Problem

The ninja Ryu has infiltrated the Shadow Clan fortress and finds himself in a long hallway.
Although ninjas are excellent fighters, they primarily rely on stealth to complete their missions.
However, many lights are turned on in the hallway, and this way it will not take long before Ryu
is spotted by a guard. To remain unseen, Ryu will need to turn off all the lights as quickly as
possible.

The hallway contains a sequence of n lights L1 . . . Ln. Some of these lights are turned on. Destroy-
ing the lights with his shurikens would be too loud, so he needs to turn them off the old-fashioned
way, using light switches. Luckily, there is a switch box nearby with a light switch Si for every
light Li. However, after trying one of the switches, he notices something funny. When he flips the
switch Si, it does not only turn on/off light Li, but also some of the neighboring lights. Ryu notices
that there is a parameter D such that flipping switch Si turns on/off all the lights Li−D . . . Li+D,
if they exist2. Turning on or off lights can attract the attention of the guards, so Ryu would like
to turn off all the lights with the minimum number of times flipping a switch. Can you help him
out?

Input

The first line of the input contains a single number: the number of test cases to follow. Each test
case has the following format:

• One line with two integers n (1 ≤ n ≤ 100) and D (0 ≤ D ≤ 15): the number of lights and
the parameter mentioned above.

• One line with n integers. The ith integer describes the current state of light Li, where 0
means off and 1 means on.

Output

For every test case in the input, the output should contain one integer on a single line: the
minimum number of times Ryu needs to flip a switch to turn off all the lights. If it is impossible
to turn off all the lights, then output the string “impossible” instead.

Examples

In the first example below, flipping switch S4 followed by S7 will turn off all the lights.

Input Output
2 2
7 3 3
1 1 1 0 0 0 0
5 1
1 0 1 0 1

2This means that S1 turns on/off all the lights L1 . . . LD+1 and Sn turns on/off all the lights Ln−D . . . Ln. Of
course, if D ≥ n, then LD+1 and Ln−D will not exist either.

9

This page is intentionally left blank.

E Undercover Pirate

Problem

Panic in the dojo! An empty bottle of rum has been found inside the dojo of the Beat All Pirates
Clan. This can mean only one thing: a pirate has gone undercover as a ninja of the clan! Clearly,
this issue must be resolved immediately, so clan leader Hanzo gathers all ninjas in one place. The
pirate has no intention to reveal himself, so Hanzo needs to come up with a clever way to expose
the pirate.

It is well known that ninjas of the Beat All Pirates Clan are trained to have a perfect weight W . It
is very unlikely that the pirate also has this weight3, so Hanzo can expose the pirate by weighing
all ninjas. Next to exposing him, Hanzo would also like to know whether the pirate is lighter or
heavier than W , purely out of curiosity. However, weighing the ninjas one by one will take all
day, so he needs a better way to do this. Luckily the clan owns a huge scale which can hold an
arbitrary number of ninjas on each side. Hanzo knows that, for n ninjas including the pirate, he
needs to use the scale only dlog3(2n + 3)e times to expose the pirate, where dxe is the smallest
integer larger than or equal to x. Unfortunately he does not remember how to do it. Can you
help him out?

Input and output

This is a problem with dynamic input and output, read the following description very
carefully.

The first line of the input contains a single number: the number of test cases to follow. Then, for
every test case you get one line with an integer n (3 ≤ n ≤ 106): the number of ninjas including
the pirate. Ninjas are numbered from 1 to n. Then your program can make at most dlog3(2n+3)e
queries.

Query: A query must be formatted as follows. You first describe the ninjas on the left side of
the scale. This description can contain at most 4 ranges of numbers, written as a − b (no
spaces) separated by spaces4. Then follows a ‘+’, followed by the description of the ninjas
on the right side of the scale.

Answer: The answer of the query consists of a single character, either ‘L’ (left side is heavier),
‘R’ (right side is heavier) or ‘E’ (both sides have the same weight).

After at most dlog3(2n + 3)e queries your program must expose the pirate by outputting the
string “Ninja i is a heavy pirate” or “Ninja i is a light pirate”, depending on whether
the pirate is heavier or lighter than W , where i is the number of the pirate. This ends the sequence
of input and output for this test case.

If your program exceeds the number of allowed queries, or if your program outputs an invalid
query (ranges are not disjoint and/or include ninjas outside of the range [1, n]), you will receive a
Wrong Answer.

3Therefore you can assume that the pirate does not have weight W .
4Singleton ranges can be written as a− a or simply a. Ranges a− b where b < a are handled as empty ranges.

However, negative values for a or b are never allowed

11

Notes

C/C++ users:

• Do fflush(NULL); after you print output.

• If you use scanf to read the input, then do not read newline characters. So, to read an
integer n with scanf, use scanf("%d", &n);.

Java/C# users:

• Do not use buffered output, System.out.println/System.Console.WriteLine will do fine.

In case you read the query answers as characters, note that every query answer is followed by a
newline character.

Examples

Note that there might be multiple ways to find the correct answer, the sequence below is just an
example. Extra newlines in the example below are for clarity only; you should print exactly one
newline character after each line of output.

Input Output
3
3

1 + 2
L

1 + 3
L

Ninja 1 is a heavy pirate
12

1-4 + 5-8
E

9-11 + 1-3
L

9 + 10
R

Ninja 10 is a heavy pirate
12

1-4 + 5-8
R

5-6 1 + 7-8 2
L

5 + 6
E

Ninja 2 is a light pirate

12

F Ultimate Finishing Strike

Problem

As a ninja, Saito Hajime has to fight many opponents who are foolish enough to challenge his
might. Most of these opponents fall easily to Saito’s great martial arts techniques and ninjitsus5.
From time to time however, the great Saito Hajime has to take care of a particularly powerful and
skilled foe6. This foe usually enters the combat after several dozens of his/her minions have been
defeated by Saito. Saito always encounters such foes in empty rectangular rooms.

S

f

Figure 3: Saito (S) hits
foe (f) after 3 bounces.

In order to defeat such a powerful foe, Saito has to perform a special
ninjitsu known as Saito Hajime’s Zero Stance Ultimate Finishing Strike.
This strike involves hitting his foe by performing a flying kick that starts
at Saito’s current position. Of course, a simple flying kick will not be
enough to defeat a powerful foe, but Saito can improve the power of his
strike by bouncing off several walls before hitting his foe. Every bounce
gives his attack more power, so that with enough bounces any foe can
be defeated. Note that Saito always bounces off a wall according to the
rule “angle of incidence is equal to the angle of reflection”.

Saito knows how often he has to bounce off a wall to defeat a particular
foe. He must be careful though; if his attack takes too long, his foe
might be able to dodge his attack. Therefore, the distance traveled by Saito while performing his
strike must be as short as possible. Can you figure out how often Saito will hit each of the four
walls while performing his strike?

Input

The first line of the input contains a single number: the number of test cases to follow. Each test
case has the following format:

• A line with three positive integer numbers L, W (3 ≤ L, W ≤ 100), and B (0 ≤ B ≤ 105):
the length and width of the room, and the number of bounces necessary to defeat his foe.

• A line with two positive integer numbers xS (0 < xS < L) and yS (0 < yS < W): the
starting coordinates of Saito.

• A line with two positive integer numbers xf (0 < xf < L) and yf (0 < yf < W): the
coordinates of the foe.

The bottom left corner of the room is at (0, 0). You can assume that Saito and his foe do not
start at the same position. If Saito hits a corner of the room, this counts as two bounces, one for
each wall. Also, Saito is able to fly over his foe while performing his strike.

5A ninjitsu is a technique that comes from the ninjas inner power called Qi.
6In the age of ninjas, such a foe was commonly referred to as Boss.

13

Output

For every test case in the input, the output should contain:

• One line with four integers: the number of times Saito has hit the north, east, south, and
west wall, respectively. The north wall is in the positive y-direction and the east wall is in
the positive x-direction. In case there are multiple possibilities, you must output all of them
ordered lexicographically, each on a separate line.

• One line containing the number 0.

Examples

Input Output
2 0 0 0 1
3 3 1 0 0 1 0
1 1 0 1 0 0
2 2 1 0 0 0
6 6 3 0
3 1 1 0 1 1
2 4 0

14

G Doubloon Game

Problem

Being a pirate means spending a lot of time at sea. Sometimes, when
there is not much wind, days can pass by without any activity. To pass
the time between chores, pirates like to play games with coins.
An old favorite of the pirates is a game for two players featuring one
stack of coins. In turn, each player takes a number of coins from the
stack. The number of coins that a player takes must be a power of a
given integer K (1, K, K2, etcetera). The winner is the player to take
the last coin(s).
Can you help the pirates figure out how the player to move can win in a given game situation?

Input

The first line of the input contains a single number: the number of test cases to follow. Each test
case has the following format:

• One line with two integers S and K, satisfying 1 ≤ S ≤ 109 and 1 ≤ K ≤ 100: the size of
the stack and the parameter K, respectively.

Output

For every test case in the input, the output should contain one integer on a single line: the smallest
number of coins that the player to move can take in order to secure the win. If there is no winning
move, the output should be 0.

Example

Input Output
5 1
5 1 0
3 2 2
8 2 0
50 3 1
100 10

15

This page is intentionally left blank.

H Walking the Plank

Problem

A bunch of pirates have successfully conquered a commercial vessel. The ship itself is too badly
damaged, so the entire shipload needs to be transferred to the pirate ship.
The pirates have anchored a plank to both ships, which the pirates can use to go from one ship
to the other, but it can only support one pirate at a time.
Each pirate executes the following routine:

1. Walk across the plank from the pirate ship to the commercial ship

2. Pick up an item from the cargo hold and return to the plank

3. Cross the plank back to the pirate ship with the item

4. Put the item in the cargo hold and return to the plank

Each of these four steps takes a given amount of time for each pirate. Every pirate will repeat
these steps until the number of pirates on the commercial ship equals the number of items there
(i.e. there’s nothing more for the pirate to collect).
If a pirate gets to the plank and it’s in use by another pirate, he will wait at his side of the plank.
When the plank is vacated and there are pirates on both sides of the plank, the pirates on the side
of the commercial vessel (carrying some item) will get to go first. At both sides of the plank, the
pirates queue up, i.e. the first one to get there will be the first one to cross. Should two or more
pirates arrive at the same side of the plank at the exact same time, the pirate who was slowest
(i.e. the one who has taken the most time to and from the cargo hold on this ship) gets to go first.
Can you determine how long it takes before the last pirate has crossed the plank with the last
item?

Input

The first line of the input contains a single number: the number of test cases to follow. Each test
case has the following format:

• One line with two integers N and P , satisfying 1 ≤ N ≤ 100, 000 and 1 ≤ P ≤ 1, 000: the
number of items on the commercial vessel and the number of pirates, respectively.

• P lines, each with 4 integers t1 through t4, satisfying 1 ≤ ti ≤ 1, 000: the time in seconds it
takes this pirate to complete each step (as listed above).

At the start, all pirates are queued up at the plank on the pirate ship in the order given in the
input (the first pirate is the first to cross over).

Output

For every test case in the input, the output should contain one integer on a single line: the time
in seconds between the time the first pirate starts crossing the plank and the time the last pirate
has crossed the plank carrying the last item.

17

Examples

Input Output
3 63
3 3 50
10 3 10 3 24
10 3 10 3
10 3 10 3
3 2
10 10 10 10
1 9 1 8
3 2
3 2 3 6
4 2 5 5

18

I Parking Ships

Problem

Life on the great oceans has been good for captain Blackbeard and his fellow pirates. They have
gathered so many treasures, that each of them is able to buy a house on their favorite island. The
houses on this island are all placed in a long row along the beach line of the island. Next to a
house, every pirate is also able to buy his own ship to do their own bit of plundering. However,
this causes a whole new kind of problem.

Along the beach line there is a long pier where every pirate can park his ship. Although there
is enough space along the pier for all the ships, not every pirate will be able to park in front of
his house. A pirate is happy with his parking space if some part of the parking space is in front
of the center of his house. Captain Blackbeard has been given the difficult task of assigning the
parking spaces to the pirates. A parking space for a pirate i is a range [ai, bi] (ai, bi ∈ R) along
the pier such that li ≤ bi−ai, where li is the length of the ship of pirate i. Thus, pirate i is happy
if ai ≤ xi ≤ bi, where xi is the center of the house of pirate i. Clearly, parking spaces of different
pirates must be interior disjoint (the ends of ranges can coincide).

Above all, the captain wants a good parking space for himself, so he gives himself the parking
space such that the center of his ship is aligned with the center of his house. Next to that, he
wants to make as many pirates happy as possible. Can you help him out?

Input

The first line of the input contains a single number: the number of test cases to follow. Each test
case has the following format:

• One line with one integer n (1 ≤ n ≤ 1, 000): the number of pirates including the captain.

• n lines with on each line two integers xi (−109 ≤ xi ≤ 109) and li (1 ≤ li ≤ 109): the center
of the house of the ith pirate and the total length of his ship, respectively. The first pirate
in the input is always the captain.

Output

For every test case in the input, the output should contain one integer on a single line: the
maximum number of happy pirates using an optimal assignment of the parking spaces. This
number includes the captain himself. You can assume that the space along the pier is unbounded
in both directions.

19

Examples

Input Output
2 5
5 3
0 6
-5 2
-4 1
4 2
5 3
4
0 4
-5 4
3 4
5 3

20

J Treasure Map

Problem

“Take 147 steps due north, turn 63 degrees clockwise,
take 82 steps, ...”. Most people don’t realize how im-
portant accuracy is when following the directions on a
pirate’s treasure map. If you’re even a tiny bit off at the
start, you’ll end up far away from the correct location
at the end. Pirates therefore use very exact definitions.
One step, for instance, has been defined by the 1670 Pi-
rate Convention to be exactly two times the size of the
wooden leg of Long John Silver, or 1.183 m in metric
units.
Captain Borbassa was thus not at all worried when he
set sail to the treasure island, having a rope with knots
in it, exactly one step apart, for accurately measuring distances. Of course he also brought his
good old geotriangle, once given to him by his father when he was six years old.
However, on closer inspection of the map, he got an unpleasant surprise. The map was made by
the famous captain Jack Magpie, who was notorious for including little gems into his directions.
In this case, there were distances listed such as

√
33 steps. How do you measure that accurately?

Fortunately, his first mate Pythagor came to the rescue. After puzzling for a few hours, he came
up with the following solution: let pirate A go 4 steps into the perpendicular direction, and hold
one end of the measuring rope there. Then pirate B goes into the desired direction while letting
the rope slide through his fingers, until he is exactly 7 steps away from pirate A. Pythagor worked
out a formula that states that pirate B has then traveled exactly

√
33 steps.

Captain Borbassa was impressed, but he revealed that there were more such distances on the map.
Paranoid as he is, he refuses to let Pythagor see the map, or even tell him what other distances
there are on it. They are all square roots of integers, that’s all he gets to know. Only on the island
itself will the captain reveal the numbers, and then he expects Pyhtagor to quickly work out the
smallest two integer numbers of steps that can combine to create the desired distance, using the
method described above.
Pythagor knows this is not easy, so he has asked your help. Can you help him by writing a program
that can determine these two integers quickly? By the way, he did ask the captain how large the
numbers inside the square root could get, and the captain replied “one billion”. He was probably
exaggerating, but you’d better make sure the program works.
If you can successfully help the pirates, you’ll get a share of the treasure. It might be gold, it
might be silver, or it might even be... a treasure map!

Input

The first line of the input contains a single number: the number of test cases to follow. Each test
case has the following format:

• One line with one integer N , satisfying 1 ≤ N ≤ 109.

Output

For every test case in the input, the output should contain two nonnegative integers, separated by
a space, on a single line: the distance pirate A needs to head in the perpendicular direction, and
the final distance between pirate A and B, such that pirate B has traveled

√
N steps. If there are

multiple solutions, give the one with the smallest numbers. If there are no solutions, the output
should be “IMPOSSIBLE” (without the quotation marks) on a single line.

21

Examples

Input Output
4 4 7
33 0 4
16 IMPOSSIBLE
50 50 51
101

22

